Zhang Ruqi, Zhao Yiding, Wang Shengchun
School of Acupuncture-Moxibustion and Tuina, Shandong University of TCM, Jinan 250014, China.
Department of Acupuncture-Moxibustion, Physiotherapy and Rehabilitation, Shandong Provincial Hospital Affiliated to First Medical University of Shandong, Jinan 250021.
Zhongguo Zhen Jiu. 2025 Apr 12;45(4):428-434. doi: 10.13703/j.0255-2930.20241124-0001. Epub 2025 Jan 21.
Electroencephalography (EEG) and magnetic resonance imaging (MRI), as neuroimaging technologies, provided objective and visualized technical tools for analyzing the brain effect mechanisms of acupuncture and moxibustion from the perspectives of brain structure, function, metabolism, and hemodynamics. The advancement of artificial intelligence (AI) algorithms can compensate for issues such as the large and scattered nature of neuroimaging data, inconsistent quality, and high heterogeneity of image information. The integration of AI with neuroimaging can facilitate individualized, intelligent, and precise prediction of acupuncture and moxibustion effects, enable intelligent classification of differential acupuncture responses, and identify brain activation patterns. This paper focuses on EEG and MRI, analyzing how machine learning and deep learning optimize multimodal neuroimaging data and their applications in the study of acupuncture and moxibustion brain effects mechanisms. Furthermore, it highlights current research gaps and limitations to provide insights for future studies on acupuncture brain effects mechanisms.
脑电图(EEG)和磁共振成像(MRI)作为神经成像技术,从脑结构、功能、代谢和血流动力学等角度,为分析针灸的脑效应机制提供了客观且可视化的技术工具。人工智能(AI)算法的进步能够弥补神经成像数据量大且分散、质量不一致以及图像信息异质性高的问题。AI与神经成像的整合有助于对针灸效果进行个体化、智能化和精准预测,实现不同针灸反应的智能分类,并识别脑激活模式。本文聚焦于EEG和MRI,分析机器学习和深度学习如何优化多模态神经成像数据及其在针灸脑效应机制研究中的应用。此外,本文还突出了当前研究的差距和局限性,为未来针灸脑效应机制的研究提供思路。