Suppr超能文献

针灸中的人工智能:连接传统知识与精准整合医学

Artificial intelligence in acupuncture: bridging traditional knowledge and precision integrative medicine.

作者信息

Hou Guo-Liang, Dong Bao-Qiang, Yu Ben-Xing, Dai Jian-Yu, Lin Xing-Xing, Cheng Ze-Zhong

机构信息

School of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China.

出版信息

Front Med (Lausanne). 2025 Jul 31;12:1633416. doi: 10.3389/fmed.2025.1633416. eCollection 2025.

Abstract

The integration of artificial intelligence (AI) into acupuncture research is accelerating the transformation of this traditional, experience-based practice into a data-driven, precision discipline. This review synthesizes recent advances in AI-enabled outcome prediction techniques, encompassing deep learning, meta-analytic modeling, natural language processing (NLP), computer vision, and neuroimaging-based analysis. For instance, convolutional neural networks (CNNs) have been successfully applied to classify tongue images and detect ZHENG patterns, while transformer-based NLP models enable automated extraction of clinical knowledge from classical texts. These technologies improve diagnostic objectivity, standardize treatment planning, and facilitate individualized care by enabling longitudinal efficacy modeling and real-time monitoring. Despite their potential, current implementations are constrained by limited and heterogeneous datasets, annotation variability, and gaps in clinical validation. We analyze key methodological innovations and challenges, and recommend future directions including the construction of federated multimodal data platforms, development of explainable AI frameworks, and promotion of open science practices. This convergence of AI and acupuncture presents a unique opportunity to enhance scientific rigor, clinical utility, and global integration of acupuncture within the paradigm of precision integrative medicine.

摘要

将人工智能(AI)整合到针灸研究中,正在加速这一基于经验的传统实践向数据驱动的精准学科转变。本综述综合了人工智能支持的结果预测技术的最新进展,包括深度学习、荟萃分析建模、自然语言处理(NLP)、计算机视觉和基于神经成像的分析。例如,卷积神经网络(CNN)已成功应用于舌象分类和证型检测,而基于Transformer的NLP模型能够从经典文本中自动提取临床知识。这些技术提高了诊断的客观性,规范了治疗方案,并通过建立纵向疗效模型和实时监测来促进个性化医疗。尽管它们具有潜力,但目前的应用受到数据集有限且异质、注释变异性以及临床验证差距的限制。我们分析了关键的方法创新和挑战,并推荐了未来的方向,包括构建联合多模态数据平台、开发可解释的人工智能框架以及推广开放科学实践。人工智能与针灸的这种融合为在精准整合医学范式内提高针灸的科学严谨性、临床实用性和全球整合性提供了独特的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验