Su Chang, Tang Xin, Jiang Qi, Han Yong, Wang Tao, Jiang Dongsheng
Department of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Laboratory for Regional Oceanography and Numercial Modeling, Qingdao Marine Science and Technology Center, Qingdao, China.
Sci Rep. 2025 Apr 14;15(1):12835. doi: 10.1038/s41598-024-85053-0.
Digital twin technology in the manufacturing process faces challenges like integrating diverse data sources and managing real-time data flow. To address this, we propose a novel three-layer knowledge graph architecture to enhance digital twin modeling for manufacturing processes. This architecture consists of a concept layer that structures key information into a knowledge network, a model layer that aligns digital and physical parameters, and a decision layer that leverages model and real-time data for decision support. Validated in aero-engine blade production, this system integrates multi-source data, enhances predictive analysis and anomaly detection, and supports process control and quality management. Over a 5-month validation period, the maximum contour error precision of the blades improved from 0.073 mm to 0.062 mm, and the product qualification rate increased from 81.3% to 85.2%. This demonstrates the system's robust capability for advancing digital twin utilization in manufacturing, highlighting its potential for future improvements.
制造过程中的数字孪生技术面临着诸如整合多样化数据源和管理实时数据流等挑战。为解决这一问题,我们提出了一种新颖的三层知识图谱架构,以增强制造过程的数字孪生建模。该架构由一个将关键信息构建成知识网络的概念层、一个对齐数字和物理参数的模型层以及一个利用模型和实时数据进行决策支持的决策层组成。该系统在航空发动机叶片生产中得到验证,它整合多源数据,增强预测分析和异常检测,并支持过程控制和质量管理。在为期5个月的验证期内,叶片的最大轮廓误差精度从0.073毫米提高到0.062毫米,产品合格率从81.3%提高到85.2%。这证明了该系统在推进制造中数字孪生应用方面的强大能力,凸显了其未来改进的潜力。