Suppr超能文献

整合五种不同计算方法对冠状病毒与人类蛋白质-蛋白质相互作用的预测与评估

Prediction and Evaluation of Coronavirus and Human Protein-Protein Interactions Integrating Five Different Computational Methods.

作者信息

Li Binghua, Li Xiaoyu, Tang Xian, Wang Jia

机构信息

Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, China.

Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.

出版信息

Proteins. 2025 Sep;93(9):1553-1570. doi: 10.1002/prot.26826. Epub 2025 Apr 15.

Abstract

The high lethality and infectiousness of coronaviruses, particularly SARS-Cov-2, pose a significant threat to human society. Understanding coronaviruses, especially the interactions between these viruses and humans, is crucial for mitigating the coronavirus pandemic. In this study, we conducted a comprehensive comparison and evaluation of five prevalent computational methods: interolog mapping, domain-domain interaction methodology, domain-motif interaction methodology, structure-based approaches, and machine learning techniques. These methods were assessed using unbiased datasets that include C1, C2h, C2v, and C3 test sets. Ultimately, we integrated these five methodologies into a unified model for predicting protein-protein interactions (PPIs) between coronaviruses and human proteins. Our final model demonstrates relatively better performance, particularly with the C2v and C3 test sets, which are frequently used datasets in practical applications. Based on this model, we further established a high-confidence PPI network between coronaviruses and humans, consisting of 18,012 interactions between 3843 human proteins and 129 coronavirus proteins. The reliability of our predictions was further validated through the current knowledge framework and network analysis. This study is anticipated to enhance mechanistic understanding of the coronavirus-human relationship a while facilitating the rediscovery of antiviral drug targets. The source codes and datasets are accessible at https://github.com/covhppilab/CoVHPPI.

摘要

冠状病毒,尤其是严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的高致死率和传染性,对人类社会构成了重大威胁。了解冠状病毒,特别是这些病毒与人类之间的相互作用,对于缓解冠状病毒大流行至关重要。在本研究中,我们对五种流行的计算方法进行了全面比较和评估:同源互作映射、结构域-结构域相互作用方法、结构域-基序相互作用方法、基于结构的方法和机器学习技术。使用包括C1、C2h、C2v和C3测试集在内的无偏数据集对这些方法进行评估。最终,我们将这五种方法整合到一个统一模型中,用于预测冠状病毒与人类蛋白质之间的蛋白质-蛋白质相互作用(PPI)。我们的最终模型表现出相对更好的性能,特别是在C2v和C3测试集上,这两个测试集是实际应用中常用的数据集。基于该模型,我们进一步建立了一个冠状病毒与人类之间的高可信度PPI网络,该网络由3843个人类蛋白质和129个冠状病毒蛋白质之间的18012个相互作用组成。我们预测的可靠性通过当前的知识框架和网络分析得到了进一步验证。预计这项研究将增进对冠状病毒与人类关系的机制理解,同时促进抗病毒药物靶点的重新发现。源代码和数据集可在https://github.com/covhppilab/CoVHPPI获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验