Fujiki Jumpei, Nakamura Tomohiro, Kreimeyer Henriette, Llorente Cristina, Fouts Derrick E, Schnabl Bernd
Department of Medicine, University of California San Diego, La Jolla, California, USA.
Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
Microbiol Spectr. 2025 Apr 15;13(5):e0330324. doi: 10.1128/spectrum.03303-24.
Specific elimination of cytolytic from the intestinal microbiota by bacteriophages (phages) attenuates ethanol-induced liver disease in pre-clinical studies; however, other clinical phage therapy studies have reported the occurrence of phage-resistant variants. Here, we assessed phage resistance using a cytolytic clinical isolate, EF01. After infecting EF01 with ΦEf2.1 () or ΦEf2.2 (), four host variants (R-EF01-A and R-EF01-B from infection with ΦEf2.1, and R-EF01-A and R-EF01-B from infection with ΦEf2.2) were isolated. Although isolate R-EF01 exhibited resistance to both phages, isolate R-EF01 demonstrated partial resistance only to ΦEf2.1. Whole-genome sequencing of these four isolates revealed an insertion sequence, IS256, -mediated disruption of in R-EF01-A and R-EF01-B. In addition, a non-synonymous mutation in , essential for the complete polysaccharide antigen (Epa), was identified in the R-EF01-A isolate. Furthermore, R-EF01 isolates exhibited IS256-associated chromosomal deletions and lacked , a gene involved in Epa biosynthesis. After gavaging mice with EF01 WT, R-EF01-A, R-EF01-A, and R-EF01-B isolates, colonization of R-EF01 isolates was significantly attenuated. R-EF01 isolates exhibited less resistance to the bile salt sodium deoxycholate and showed reduced adherence to intestinal cell monolayers, suggesting that phage-resistant variants with alterations in bacterial surface molecules, potentially including those involved in Epa biosynthesis, reduced pathogen fitness by attenuating gut colonization. In summary, IS256 is involved in phage resistance of a cytolytic clinical isolate, and certain phage resistance mechanisms could contribute to favorable clinical outcomes by promoting the swift elimination of phage-resistant variants in the treatment of alcohol-associated hepatitis.
Phage therapy is a promising approach for precise editing of the gut microbiota. Notably, the specific elimination of cytolytic from the intestinal microbiota by phages attenuates ethanol-induced liver disease in pre-clinical studies. Despite the great promise of phage therapy, the occurrence of phage-resistant variants represents a concern for the successful development of phage-based therapies. In this context, we assessed phage resistance using a cytolytic clinical isolate. Isolated phage-resistant variants acquired mutations or deletions of Epa biosynthesis-related genes and exhibited attenuated colonization in the gut. These phage-resistant variants showed less resistance to bile salts and reduced adherence to intestinal cell monolayers. These results suggest that even if phage-resistant variants arise during phage therapy, certain mechanisms of phage resistance may contribute to the rapid elimination of phage-resistant variants promoting favorable clinical outcomes in the treatment of alcohol-associated hepatitis.
在临床前研究中,噬菌体(phages)特异性清除肠道微生物群中的溶细胞菌可减轻乙醇诱导的肝病;然而,其他临床噬菌体治疗研究报告了噬菌体抗性变体的出现。在此,我们使用溶细胞菌临床分离株EF01评估噬菌体抗性。用ΦEf2.1()或ΦEf2.2()感染EF01后,分离出四个宿主变体(来自ΦEf2.1感染的R-EF01-A和R-EF01-B,以及来自ΦEf2.2感染的R-EF01-A和R-EF01-B)。虽然分离株R-EF01对两种噬菌体均表现出抗性,但分离株R-EF01仅对ΦEf2.1表现出部分抗性。对这四个分离株进行全基因组测序发现,R-EF01-A和R-EF01-B中存在插入序列IS256介导的基因破坏。此外,在R-EF01-A分离株中鉴定出在完整多糖抗原(Epa)中起关键作用的基因中的一个非同义突变。此外,R-EF01分离株表现出与IS256相关的染色体缺失,并且缺乏参与Epa生物合成的基因。在用EF01野生型、R-EF01-A、R-EF01-A和R-EF01-B分离株灌胃小鼠后,R-EF01分离株的定殖显著减弱。R-EF01分离株对胆盐脱氧胆酸钠的抗性较低,并且对肠道细胞单层的粘附减少,这表明细菌表面分子(可能包括参与Epa生物合成的分子)发生改变的噬菌体抗性变体通过减弱肠道定殖降低了病原体适应性。总之,IS256参与了溶细胞菌临床分离株的噬菌体抗性,并且某些噬菌体抗性机制可能通过在酒精性肝炎治疗中促进噬菌体抗性变体的快速清除而有助于产生良好的临床结果。
噬菌体疗法是一种有前景的肠道微生物群精确编辑方法。值得注意的是,在临床前研究中,噬菌体特异性清除肠道微生物群中的溶细胞菌可减轻乙醇诱导的肝病。尽管噬菌体疗法前景广阔,但噬菌体抗性变体的出现是基于噬菌体的疗法成功开发的一个担忧问题。在此背景下,我们使用溶细胞菌临床分离株评估噬菌体抗性。分离出的噬菌体抗性变体获得了Epa生物合成相关基因的突变或缺失,并在肠道中的定殖减弱。这些噬菌体抗性变体对胆盐的抗性较低,并且对肠道细胞单层的粘附减少。这些结果表明,即使在噬菌体治疗期间出现噬菌体抗性变体,某些噬菌体抗性机制可能有助于在酒精性肝炎治疗中快速清除噬菌体抗性变体,从而促进良好的临床结果。