Suppr超能文献

噬菌体疗法:从生物学机制到未来方向。

Phage therapy: From biological mechanisms to future directions.

机构信息

Center for Innovative Phage Applications and Therapeutics, Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA 92093-0507, USA.

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Cell. 2023 Jan 5;186(1):17-31. doi: 10.1016/j.cell.2022.11.017.

Abstract

Increasing antimicrobial resistance rates have revitalized bacteriophage (phage) research, the natural predators of bacteria discovered over 100 years ago. In order to use phages therapeutically, they should (1) preferably be lytic, (2) kill the bacterial host efficiently, and (3) be fully characterized to exclude side effects. Developing therapeutic phages takes a coordinated effort of multiple stakeholders. Herein, we review the state of the art in phage therapy, covering biological mechanisms, clinical applications, remaining challenges, and future directions involving naturally occurring and genetically modified or synthetic phages.

摘要

随着抗菌药物耐药率的不断上升,100 多年前被发现的细菌“天然捕食者”噬菌体(phage)的研究重新受到关注。为了将噬菌体用于治疗,它们应该(1)最好是裂解性的,(2)有效地杀死细菌宿主,并且(3)经过充分的特性描述以排除副作用。开发治疗性噬菌体需要多个利益相关者的协调努力。本文综述了噬菌体治疗的最新进展,涵盖了生物学机制、临床应用、尚存挑战以及涉及天然存在的、经过基因修饰的或合成的噬菌体的未来方向。

相似文献

3
Preclinical data and safety assessment of phage therapy in humans.人体噬菌体治疗的临床前数据和安全性评估。
Curr Opin Biotechnol. 2021 Apr;68:310-317. doi: 10.1016/j.copbio.2021.03.002. Epub 2021 Apr 13.
5
Optimizing bacteriophage treatment of resistant .优化噬菌体治疗耐药菌。
mSphere. 2024 Jul 30;9(7):e0070723. doi: 10.1128/msphere.00707-23. Epub 2024 Jun 27.
7
Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.噬菌体疗法对细菌性马角膜炎小鼠模型有效。
Appl Environ Microbiol. 2016 Aug 15;82(17):5332-9. doi: 10.1128/AEM.01166-16. Print 2016 Sep 1.
8
Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.噬菌体的制剂学、稳定性和包封用于噬菌体治疗。
Adv Colloid Interface Sci. 2017 Nov;249:100-133. doi: 10.1016/j.cis.2017.05.014. Epub 2017 May 14.
9
Engineering Bacteriophages as Versatile Biologics.工程噬菌体作为多功能生物制剂。
Trends Microbiol. 2019 Apr;27(4):355-367. doi: 10.1016/j.tim.2018.09.006. Epub 2018 Oct 12.

引用本文的文献

本文引用的文献

2
Bacteriophage genome engineering with CRISPR-Cas13a.利用 CRISPR-Cas13a 进行噬菌体基因组工程改造
Nat Microbiol. 2022 Dec;7(12):1956-1966. doi: 10.1038/s41564-022-01243-4. Epub 2022 Oct 31.
3
Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing.广谱 CRISPR-Cas13a 可实现高效噬菌体基因组编辑。
Nat Microbiol. 2022 Dec;7(12):1967-1979. doi: 10.1038/s41564-022-01258-x. Epub 2022 Oct 31.
4
Isolation of a Peptide That Binds to Lytic Bacteriophage.一种与裂解性噬菌体结合的肽的分离
ACS Omega. 2022 Oct 12;7(42):38053-38060. doi: 10.1021/acsomega.2c05539. eCollection 2022 Oct 25.
9
Phage Products for Fighting Antimicrobial Resistance.对抗抗菌药物耐药性的噬菌体产品
Microorganisms. 2022 Jun 30;10(7):1324. doi: 10.3390/microorganisms10071324.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验