Suppr超能文献

使用长短期记忆神经网络预测连续干燥系统中的玉米水分含量。

Predicting Corn Moisture Content in Continuous Drying Systems Using LSTM Neural Networks.

作者信息

Simonič Marko, Ficko Mirko, Klančnik Simon

机构信息

Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.

出版信息

Foods. 2025 Mar 19;14(6):1051. doi: 10.3390/foods14061051.

Abstract

As we move toward Agriculture 4.0, there is increasing attention and pressure on the productivity of food production and processing. Optimizing efficiency in critical food processes such as corn drying is essential for long-term storage and economic viability. By using innovative technologies such as machine learning, neural networks, and LSTM modeling, a predictive model was implemented for past data that include various drying parameters and weather conditions. As the data collection of 3826 samples was not originally intended as a dataset for predictive models, various imputation techniques were used to ensure integrity. The model was implemented on the imputed data using a multilayer neural network consisting of an LSTM layer and three dense layers. Its performance was evaluated using four objective metrics and achieved an RMSE of 0.645, an MSE of 0.416, an MAE of 0.352, and a MAPE of 2.555, demonstrating high predictive accuracy. Based on the results and visualization, it was concluded that the proposed model could be a useful tool for predicting the moisture content at the outlets of continuous drying systems. The research results contribute to the further development of sustainable continuous drying techniques and demonstrate the potential of a data-driven approach to improve process efficiency. This method focuses on reducing energy consumption, improving product quality, and increasing the economic profitability of food processing.

摘要

随着我们迈向农业4.0,食品生产和加工的生产率受到越来越多的关注和压力。优化玉米干燥等关键食品加工过程的效率对于长期储存和经济可行性至关重要。通过使用机器学习、神经网络和长短期记忆(LSTM)建模等创新技术,针对包含各种干燥参数和天气条件的过往数据实施了一个预测模型。由于最初收集的3826个样本数据并非用于预测模型的数据集,因此使用了各种插补技术来确保数据完整性。该模型使用由一个LSTM层和三个全连接层组成的多层神经网络在插补后的数据上运行。使用四个客观指标对其性能进行评估,均方根误差(RMSE)为0.645,均方误差(MSE)为0.416,平均绝对误差(MAE)为0.352,平均绝对百分比误差(MAPE)为2.555,显示出较高的预测准确性。基于结果和可视化分析,得出结论:所提出的模型可能是预测连续干燥系统出口处水分含量的有用工具。研究结果有助于可持续连续干燥技术的进一步发展,并证明了数据驱动方法在提高过程效率方面的潜力。该方法侧重于降低能源消耗、提高产品质量以及增加食品加工的经济盈利能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16e4/11942361/174e2f9881ad/foods-14-01051-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验