Suppr超能文献

通过烯烃和酮中C(sp)-C(sp)键断裂进行的合成。

Synthesis through C(sp)-C(sp) Bond Scission in Alkenes and Ketones.

作者信息

Šimek Michal, Dworkin Jeremy H, Kwon Ohyun

机构信息

Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States.

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 160 00 Prague 6, Czech Republic.

出版信息

Acc Chem Res. 2025 May 6;58(9):1547-1561. doi: 10.1021/acs.accounts.5c00156. Epub 2025 Apr 15.

Abstract

ConspectusThe homolytic cleavage of C-C bonds adjacent to functional groups has recently become a popular strategy for restructuring the skeletons of complex organic molecules. In contrast to the traditional reactivity profiles of polar bond disconnections, homolytic scission furnishes carbon-centered free radicals primed for controlled termination with a diverse range of radicophiles. Beyond standard radical capture, transition-metal catalysis facilitates sophisticated C-C and C-heteroatom bond-forming reactions. Intensive efforts have been focused over many years into the cleavage of the neighboring C-C bonds of carboxylic acids and alcohols. Despite the ubiquity of alkenes and ketones in natural products, feedstock chemicals, and common synthetic intermediates, much less attention has been paid to exploiting their potential in diversifying chiral pool materials, such as terpenes and terpenoids. Defunctionalization in this manner is a powerful approach for synthesizing high-value chemicals and advanced synthetic intermediates because of the possibility to reconstruct and further decorate chirality-bearing carbon skeletons. Motivated by synthetic necessity, since 2018 our group has focused on developing ozonolysis-based dealkenylative molecular diversification, and we expanded into deacylation in 2025. In this Account, we chronicle our initial motivation, describe the historical background, and summarize our research into dealkenylative and deacylative synthesis. Our dealkenylative approach capitalizes on the ozonolysis of alkenes in MeOH to generate α-methoxyhydroperoxides primed for a reaction with reducing agents. Their reduction through single electron transfer, mediated by a transition metal, leads to the formation of an alkoxyl radical that undergoes rapid β-scission, furnishing both a carbon-centered free radical and an ester group derived from the acetal carbon atom. The produced free radical can be strategically terminated by radicophiles, thereby delivering remodeled chiral molecules. Using this concept, we have developed hydrodealkenylation (through hydrogen atom transfer from benzenethiol), dealkenylative thiylation (through thiyl group transfer from diaryl disulfides), alkenylation (through addition/elimination with nitrostyrenes), and oxodealkenylation (through treatment with TEMPO followed by oxidation). Furthermore, kinetic analysis has enabled the development of a catalytic Fe/vitamin C system for dealkenylative alkynylation and halodealkenylation. Synergizing ozonolysis and copper catalysis has recently enabled aminodealkenylation through net-redox-neutral C-C cleavage followed by C-N bond formation. Although the high oxidation potential of ozone relative to organic compounds makes alkene-to-peroxide conversion possible, it also limits the applicability of dealkenylative techniques for substrates featuring ozone-sensitive functional groups. We recently overcame this constraint by first applying Isayama-Mukayiama peroxidation to olefins and then using a novel catalytic system─catalytic Fe and PhSH with stoichiometric γ-terpinene─for ozone-free hydrodealkenylation. Beyond alkenes, we have developed a straightforward methodology for the homolytic deacylative cleavage of ketones as well, including cycloalkanones. This process is applicable in total syntheses and in the late-stage modifications of complex ketone-containing natural products.

摘要

概述

与官能团相邻的碳 - 碳键的均裂裂解最近已成为复杂有机分子骨架重构的常用策略。与极性键断裂的传统反应性特征不同,均裂裂解产生以碳为中心的自由基,这些自由基可与多种亲核试剂进行受控终止反应。除了标准的自由基捕获反应外,过渡金属催化还促进了复杂的碳 - 碳和碳 - 杂原子键形成反应。多年来,人们一直致力于羧酸和醇的相邻碳 - 碳键的裂解。尽管烯烃和酮在天然产物、原料化学品和常见合成中间体中普遍存在,但在利用它们在多样化手性池材料(如萜类和萜类化合物)方面的潜力方面,关注较少。由于有可能重构并进一步修饰带有手性的碳骨架,这种方式的去官能团化是合成高价值化学品和高级合成中间体的有力方法。出于合成需求,自2018年以来,我们团队专注于开发基于臭氧分解的脱烯基分子多样化方法,并于2025年扩展到脱酰基反应。在本综述中,我们记录了我们最初的动机,描述了历史背景,并总结了我们在脱烯基和脱酰基合成方面的研究。我们的脱烯基方法利用甲醇中烯烃的臭氧分解生成α - 甲氧基氢过氧化物,该过氧化物可与还原剂发生反应。通过过渡金属介导的单电子转移对其进行还原,会导致形成一个烷氧基自由基,该自由基会迅速进行β - 断裂,生成一个以碳为中心的自由基和一个源自缩醛碳原子的酯基。产生的自由基可通过亲核试剂进行策略性终止,从而得到重塑的手性分子。利用这一概念,我们开发了加氢脱烯基反应(通过苯硫酚的氢原子转移)、脱烯基硫醚化反应(通过二芳基二硫化物的硫基转移)、烯基化反应(通过与硝基苯乙烯的加成/消除反应)和氧代脱烯基反应(通过用TEMPO处理然后氧化)。此外,动力学分析使得开发用于脱烯基炔基化和卤代脱烯基化的催化铁/维生素C体系成为可能。最近,臭氧分解与铜催化协同作用,通过净氧化还原中性的碳 - 碳裂解随后形成碳 - 氮键实现了氨基脱烯基化反应。尽管相对于有机化合物,臭氧的高氧化电位使得烯烃向过氧化物的转化成为可能,但这也限制了脱烯基技术对具有臭氧敏感官能团的底物的适用性。我们最近通过首先将Isayama - Mukayiama过氧化反应应用于烯烃,然后使用一种新型催化体系(催化铁和苯硫酚与化学计量的γ - 萜品烯)实现了无臭氧加氢脱烯基反应,克服了这一限制。除了烯烃,我们还开发了一种直接的方法用于酮(包括环烷酮)的均裂脱酰基裂解。该过程适用于复杂含酮天然产物的全合成和后期修饰。

相似文献

1
Synthesis through C(sp)-C(sp) Bond Scission in Alkenes and Ketones.通过烯烃和酮中C(sp)-C(sp)键断裂进行的合成。
Acc Chem Res. 2025 May 6;58(9):1547-1561. doi: 10.1021/acs.accounts.5c00156. Epub 2025 Apr 15.
3
Dealkenylative Alkenylation: Formal σ-Bond Metathesis of Olefins.烯丙基化反应:烯烃的形式 σ-键复分解反应。
Angew Chem Int Ed Engl. 2020 Sep 28;59(40):17565-17571. doi: 10.1002/anie.202005267. Epub 2020 Aug 28.
5
Dealkenylative Alkynylation Using Catalytic Fe and Vitamin C.使用催化铁和维生素 C 的去烯丙基炔基化反应。
J Am Chem Soc. 2022 Aug 17;144(32):14828-14837. doi: 10.1021/jacs.2c05980. Epub 2022 Aug 4.
6
Transition-Metal-Catalyzed C-C Bond Formation from C-C Activation.过渡金属催化的由碳-碳活化形成碳-碳键
Acc Chem Res. 2023 Nov 7;56(21):2867-2886. doi: 10.1021/acs.accounts.3c00230. Epub 2023 Oct 26.
8
Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations.铜催化的自由基接力用于不对称自由基转化
Acc Chem Res. 2018 Sep 18;51(9):2036-2046. doi: 10.1021/acs.accounts.8b00265. Epub 2018 Sep 5.

引用本文的文献

本文引用的文献

5
Synthesis of non-canonical amino acids through dehydrogenative tailoring.通过脱氢修饰合成非天然氨基酸。
Nature. 2024 Oct;634(8033):352-358. doi: 10.1038/s41586-024-07988-8. Epub 2024 Aug 29.
8
Asymmetric Total Synthesis of (-)-Lemnalemnane A.(-)-水萍烷A的不对称全合成
Org Lett. 2024 Mar 8;26(9):1803-1806. doi: 10.1021/acs.orglett.3c04314. Epub 2024 Feb 26.
9
A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds.最近发现的天然有机卤代化合物综述。
J Nat Prod. 2024 Apr 26;87(4):1285-1305. doi: 10.1021/acs.jnatprod.3c00803. Epub 2024 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验