Suppr超能文献

利用动力系统中的超过量估计局部维数和极值指数的局限性。

Limitations of estimating local dimension and extremal index using exceedances in dynamical systems.

作者信息

Del Amo Ignacio, Datseris George, Holland Mark

机构信息

Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, United Kingdom.

出版信息

Chaos. 2025 Apr 1;35(4). doi: 10.1063/5.0250492.

Abstract

Two dynamical indicators, the local dimension and the extremal index, used to quantify persistence in phase space have been developed and applied to different data across various disciplines. These are computed using the asymptotic limit of exceedances over a threshold, which turns to be a generalized Pareto distribution in many cases. However, the derivation of the asymptotic distribution requires mathematical properties, which are not present even in highly idealized dynamical systems and unlikely to be present in the real data. Here, we examine in detail the issues that arise when estimating these quantities for some known dynamical systems. We focus on how the geometry of an invariant set can affect the regularly varying properties of the invariant measure. We demonstrate that singular measures supported on sets of the non-integer dimension are typically not regularly varying and that the absence of regular variation makes the estimates resolution dependent. We show as well that the most common extremal index estimation method is not well defined for continuous time processes sampled at fixed time steps, which is an underlying assumption in its application to data.

摘要

用于量化相空间中持续性的两个动力学指标,即局部维度和极值指数,已被开发出来并应用于各学科的不同数据。这些指标是通过超过阈值的渐近极限来计算的,在许多情况下,这会变成一个广义帕累托分布。然而,渐近分布的推导需要数学性质,即使在高度理想化的动力学系统中也不存在这些性质,并且在实际数据中也不太可能存在。在这里,我们详细研究在为一些已知动力学系统估计这些量时出现的问题。我们关注不变集的几何形状如何影响不变测度的正则变化性质。我们证明,支撑在非整数维集上的奇异测度通常不是正则变化的,并且正则变化的缺失使得估计依赖于分辨率。我们还表明,最常见的极值指数估计方法对于以固定时间步长采样的连续时间过程定义不明确,这是其应用于数据时的一个潜在假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验