通过恒河猴单细胞图谱增强对免疫细胞表型和功能的解读。

Enhanced interpretation of immune cell phenotype and function through a rhesus macaque single-cell atlas.

作者信息

Mahyari Eisa, Boggy Gregory J, McElfresh G W, Kaza Maanasa, Benjamin Sebastian, Varco-Merth Benjamin, Ojha Sohita, Feltham Shana, Goodwin William, Nkoy Candice, Duell Derick, Selseth Andrea, Bennett Tyler, Barber-Axthelm Aaron, Smedley Jeremy V, Labriola Caralyn S, Axthelm Michael K, Reeves R Keith, Okoye Afam A, Hansen Scott G, Picker Louis J, Bimber Benjamin N

机构信息

Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.

Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.

出版信息

Cell Genom. 2025 May 14;5(5):100849. doi: 10.1016/j.xgen.2025.100849. Epub 2025 Apr 14.

Abstract

Single-cell RNA sequencing (scRNA-seq) allows cell classification using genome-wide transcriptional state; however, high-dimensional transcriptomic profiles, and the unsupervised analyses employed to interpret them, provide a systematically different view of biology than well-established functional/lineage definitions of immunocytes. Understanding these differences and limits is essential for accurate interpretation of these rich data. We present the Rhesus Immune Reference Atlas (RIRA), the first immune-focused macaque single-cell multi-tissue atlas. We contrasted transcriptional profiles against immune lineages, using surface protein and marker genes as ground truth. While the pattern of clustering can align with cell type, this is not always true. Especially within T and natural killer (NK) cells, many functionally distinct subsets lack defining markers, and strong shared expression programs, such as cytotoxicity, result in systematic intermingling by unsupervised clustering. We identified gene programs with high discriminatory/diagnostic value, including multi-gene signatures that model T/NK cell maturation. Directly measuring these diagnostic programs complements unsupervised analyses.

摘要

单细胞RNA测序(scRNA-seq)可利用全基因组转录状态进行细胞分类;然而,高维转录组图谱以及用于解释这些图谱的无监督分析,与免疫细胞已确立的功能/谱系定义相比,提供了一种截然不同的生物学视角。理解这些差异和局限性对于准确解读这些丰富的数据至关重要。我们展示了恒河猴免疫参考图谱(RIRA),这是首个以免疫为重点的猕猴单细胞多组织图谱。我们以表面蛋白和标记基因为基本事实,将转录图谱与免疫谱系进行了对比。虽然聚类模式可以与细胞类型对齐,但情况并非总是如此。特别是在T细胞和自然杀伤(NK)细胞中,许多功能不同的亚群缺乏定义性标记,而诸如细胞毒性等强大的共享表达程序会导致无监督聚类产生系统性的混合。我们鉴定出具有高鉴别/诊断价值的基因程序,包括模拟T/NK细胞成熟的多基因特征。直接测量这些诊断程序可补充无监督分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da6c/12143338/4438514361d7/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索