Zhao Wei, Zhang Baocan, Zhou Haifeng, Wei Dezhi, Huang Chenxi, Lan Quan
Chengyi College, Jimei University, Xiamen, 361021, China.
School of Marine Engineering, Jimei University, Xiamen, 361021, China.
Sci Rep. 2025 Apr 15;15(1):12935. doi: 10.1038/s41598-025-96611-5.
Brain-computer interface (BCI) systems allow users to communicate with external devices by translating neural signals into real-time commands. Convolutional neural networks (CNNs) have been effectively utilized for decoding motor imagery electroencephalography (MI-EEG) signals in BCIs. However, traditional CNN-based methods face challenges such as individual variability in EEG signals and the limited receptive fields of CNNs. This study presents the Multi-Scale Convolutional Transformer (MSCFormer) model that integrates multiple CNN branches for multi-scale feature extraction and a Transformer module to capture global dependencies, followed by a fully connected layer for classification. The multi-branch multi-scale CNN structure effectively addresses individual variability in EEG signals, enhancing the model's generalization capabilities, while the Transformer encoder strengthens global feature integration and improves decoding performance. Extensive experiments on the BCI IV-2a and IV-2b datasets show that MSCFormer achieves average accuracies of 82.95% (BCI IV-2a) and 88.00% (BCI IV-2b), with kappa values of 0.7726 and 0.7599 in five-fold cross-validation, surpassing several state-of-the-art methods. These results highlight MSCFormer's robustness and accuracy, underscoring its potential in EEG-based BCI applications. The code has been released in https://github.com/snailpt/MSCFormer .
脑机接口(BCI)系统通过将神经信号转化为实时指令,使用户能够与外部设备进行通信。卷积神经网络(CNN)已被有效地用于解码BCI中的运动想象脑电图(MI-EEG)信号。然而,传统的基于CNN的方法面临着诸如EEG信号的个体差异以及CNN有限的感受野等挑战。本研究提出了多尺度卷积变换器(MSCFormer)模型,该模型集成了多个用于多尺度特征提取的CNN分支和一个用于捕捉全局依赖性的变换器模块,随后是一个用于分类的全连接层。多分支多尺度CNN结构有效地解决了EEG信号中的个体差异,增强了模型的泛化能力,而变换器编码器则加强了全局特征整合并提高了解码性能。在BCI IV-2a和IV-2b数据集上进行的大量实验表明,MSCFormer在五折交叉验证中的平均准确率分别为82.95%(BCI IV-2a)和88.00%(BCI IV-2b),kappa值分别为0.7726和0.7599,超过了几种先进方法。这些结果突出了MSCFormer的鲁棒性和准确性,强调了其在基于EEG的BCI应用中的潜力。代码已在https://github.com/snailpt/MSCFormer上发布。