Suppr超能文献

MCTGNet:一种用于稳健运动想象脑电信号解码的多尺度卷积与混合注意力网络。

MCTGNet: A Multi-Scale Convolution and Hybrid Attention Network for Robust Motor Imagery EEG Decoding.

作者信息

Zhan Huangtao, Li Xinhui, Song Xun, Lv Zhao, Li Ping

机构信息

School of Computer Science and Technology, Anhui University, Hefei 230601, China.

The Key Laboratory of Flight Techniques and Flight Safety, Civil Aviation Flight University of China, Deyang 618307, China.

出版信息

Bioengineering (Basel). 2025 Jul 17;12(7):775. doi: 10.3390/bioengineering12070775.

Abstract

Motor imagery (MI) EEG decoding is a key application in brain-computer interface (BCI) research. In cross-session scenarios, the generalization and robustness of decoding models are particularly challenging due to the complex nonlinear dynamics of MI-EEG signals in both temporal and frequency domains, as well as distributional shifts across different recording sessions. While multi-scale feature extraction is a promising approach for generalized and robust MI decoding, conventional classifiers (e.g., multilayer perceptrons) struggle to perform accurate classification when confronted with high-order, nonstationary feature distributions, which have become a major bottleneck for improving decoding performance. To address this issue, we propose an end-to-end decoding framework, MCTGNet, whose core idea is to formulate the classification process as a high-order function approximation task that jointly models both task labels and feature structures. By introducing a group rational Kolmogorov-Arnold Network (GR-KAN), the system enhances generalization and robustness under cross-session conditions. Experiments on the BCI Competition IV 2a and 2b datasets demonstrate that MCTGNet achieves average classification accuracies of 88.93% and 91.42%, respectively, outperforming state-of-the-art methods by 3.32% and 1.83%.

摘要

运动想象(MI)脑电信号解码是脑机接口(BCI)研究中的一项关键应用。在跨时段场景中,由于MI-EEG信号在时域和频域中复杂的非线性动力学,以及不同记录时段之间的分布变化,解码模型的泛化能力和鲁棒性面临着特别的挑战。虽然多尺度特征提取是实现泛化且鲁棒的MI解码的一种有前景的方法,但传统分类器(例如多层感知器)在面对高阶、非平稳特征分布时难以进行准确分类,这已成为提升解码性能的主要瓶颈。为解决这一问题,我们提出了一种端到端解码框架MCTGNet,其核心思想是将分类过程表述为一个高阶函数逼近任务,该任务同时对任务标签和特征结构进行建模。通过引入群理性柯尔莫哥洛夫-阿诺德网络(GR-KAN),该系统在跨时段条件下增强了泛化能力和鲁棒性。在BCI竞赛IV 2a和2b数据集上的实验表明,MCTGNet分别实现了88.93%和91.42%的平均分类准确率,比现有最先进方法分别高出3.32%和1.83%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b495/12292681/f100879193fd/bioengineering-12-00775-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验