Lin Xiong-Wei, Gajula Prasad, Luo Xiao-Shan, Zhao Mingrui, Zhao Xiao-Bo, Fan Ye
School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen, 518000, China.
Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.
Sci Rep. 2025 Apr 15;15(1):12887. doi: 10.1038/s41598-025-96516-3.
Piezoelectric composite materials have demonstrated significant potential for developing high-performance wearable sensors. However, optimizing the piezoelectric output performance in polymer-based devices remains challenging due to the suboptimal synergy between the piezoelectric reinforcement phase and substrate materials. Moreover, the instability of response signals further hampers the sensor's practical utility. In this investigation, wet-spinning technology was applied to fabricate a novel Barium Titanate (BaTiO)/Polyvinylidene fluoride (PVDF) composite fiber. Through this approach, we enhanced the piezoelectric properties of the material. Notably, our electron diffraction analysis revealed compelling lattice deformations in the ceramic particle-polymer interface, yielding significant enhancements in the piezoelectric characteristics. Remarkably, incorporating just 1.5 wt% of BaTiO in PVDF led to a piezoelectric output of 0.88 V during dynamic cycle tests at 1 Hz. Encouragingly, the output signal exhibited a robust linear correlation (R = 0.996) with applied compression force.
压电复合材料在开发高性能可穿戴传感器方面已展现出巨大潜力。然而,由于压电增强相与基底材料之间协同作用欠佳,优化基于聚合物的器件中的压电输出性能仍然具有挑战性。此外,响应信号的不稳定性进一步阻碍了该传感器的实际应用。在本研究中,采用湿纺技术制备了一种新型钛酸钡(BaTiO)/聚偏氟乙烯(PVDF)复合纤维。通过这种方法,我们提高了材料的压电性能。值得注意的是,我们的电子衍射分析揭示了陶瓷颗粒 - 聚合物界面处引人注目的晶格变形,从而使压电特性得到显著增强。值得一提的是,在PVDF中仅加入1.5 wt%的BaTiO,在1 Hz的动态循环测试中产生了0.88 V的压电输出。令人鼓舞的是,输出信号与施加的压缩力呈现出强线性相关性(R = 0.996)。