Suppr超能文献

用于高效路面损伤识别的先进轻量级深度学习视觉框架。

Advanced lightweight deep learning vision framework for efficient pavement damage identification.

作者信息

Dong Shuai, Wang Yunlong, Cao Jin, Ma Jia, Chen Yang, Kang Xin

机构信息

School of Civil and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China.

School of Electromechanical and Information Engineering, Putian University, Putian, 351100, China.

出版信息

Sci Rep. 2025 Apr 15;15(1):12966. doi: 10.1038/s41598-025-97132-x.

Abstract

Pavement crack serves as a crucial indicator of road condition, directly associated with subsequent pavement deterioration. To address the demand for large-scale real-time pavement damage assessment, this study proposes a lightweight pavement damage detection model based on YOLOv5s (LPDD-YOLO). Initially, a lightweight feature extraction network, FasterNet, is adopted to reduce the number of parameters and computational complexity. Secondly, to mitigate the reduction in accuracy resulting from the usage of lightweight network, the attention-based downsampling module and the neural network cognitive module are introduced. These modules aim to enhance the feature extraction robustness and to eliminate interference from irrelevant features. In addition, considering the significant variation in aspect ratios and diverse morphologies of pavement damages, K-Means clustering and the deformable convolution module are employed. These mechanisms ensure dynamic anchor feature selection and extend the scope of deformation ability, respectively. According to the ablation experiment on a self-built dataset, LPDD-YOLO demonstrates notable improvements in both accuracy and efficiency compared to the original model. Specifically, the mAP increases by 4.1%, and the F1 score rises by 5.3%. Moreover, LPDD-YOLO can obtain a 47.3% reduction in parameters and a 54.4% decrease in GFLOPs. It is noteworthy that LPDD-YOLO achieves real-time and accurate damage detection, with a speed of up to 85 FPS. The effectiveness and superiority of LPDD-YOLO are further substantiated through comparisons with other state-of-the-art algorithms.

摘要

路面裂缝是道路状况的关键指标,与随后的路面损坏直接相关。为了满足大规模实时路面损坏评估的需求,本研究提出了一种基于YOLOv5s的轻量级路面损坏检测模型(LPDD-YOLO)。首先,采用轻量级特征提取网络FasterNet来减少参数数量和计算复杂度。其次,为了减轻因使用轻量级网络而导致的精度下降,引入了基于注意力的下采样模块和神经网络认知模块。这些模块旨在增强特征提取的鲁棒性并消除无关特征的干扰。此外,考虑到路面损坏的长宽比和形态差异很大,采用了K均值聚类和可变形卷积模块。这些机制分别确保了动态锚点特征选择和扩展了变形能力范围。根据在自建数据集上的消融实验,与原始模型相比,LPDD-YOLO在精度和效率方面都有显著提高。具体而言,平均精度均值(mAP)提高了4.1%,F1分数提高了5.3%。此外,LPDD-YOLO的参数可减少47.3%,浮点运算次数(GFLOPs)可减少54.4%。值得注意的是,LPDD-YOLO实现了实时准确的损坏检测,速度高达85帧每秒。通过与其他先进算法的比较,进一步证实了LPDD-YOLO的有效性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29eb/12000367/bedc7ea3ca46/41598_2025_97132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验