Suppr超能文献

BD-YOLOv8s:通过多维注意力和精确重建增强桥梁缺陷检测

BD-YOLOv8s: enhancing bridge defect detection with multidimensional attention and precision reconstruction.

作者信息

Xu Wenyuan, Li Xiang, Ji Yongcheng, Li Shuai, Cui Chuang

机构信息

Northeast Forestry University, Harbin, China.

出版信息

Sci Rep. 2024 Aug 12;14(1):18673. doi: 10.1038/s41598-024-69722-8.

Abstract

The YOLO (You Only Look Once) series has recently demonstrated remarkable effectiveness in the domain of object detection. However, deploying these networks for concrete bridge defect detection presents multiple challenges, such as insufficient accuracy, missed detections, and false positives. These complications arise chiefly from the complex backgrounds and the significant variability in defect characteristics observed in bridge imagery. This study presents BD-YOLOv8s, an advanced methodology utilizing YOLOv8s for bridge defect detection. This approach augments the network's adaptability to a broad spectrum of bridge defect images through the integration of ODConv into the second convolutional layer, processing information within a four-dimensional kernel space. Furthermore, incorporating the CBAM module into the first two C2F architectures leverages spatial and channel attention mechanisms to focus on critical features, thus enhancing the accuracy of detail detection. CARAFE replaces traditional upsampling methods, improving feature map reconstruction and significantly reducing blurs and artifacts. In performance assessments, BD-YOLOv8s attained 86.2% mAP@0.5 and 56% mAP@0.5:0.95, surpassing the baseline by 5.3% and 5.7%. This signifies a considerable decrease in both false positives and missed detections, culminating in an overall improvement in accuracy.

摘要

YOLO(You Only Look Once)系列最近在目标检测领域展现出了显著的有效性。然而,将这些网络应用于混凝土桥梁缺陷检测存在诸多挑战,比如精度不足、漏检和误报。这些问题主要源于桥梁图像中复杂的背景以及缺陷特征的显著变化。本研究提出了BD-YOLOv8s,这是一种利用YOLOv8s进行桥梁缺陷检测的先进方法。该方法通过将ODConv集成到第二个卷积层,在四维核空间内处理信息,增强了网络对广泛桥梁缺陷图像的适应性。此外,在前两个C2F架构中融入CBAM模块,利用空间和通道注意力机制聚焦关键特征,从而提高细节检测的准确性。CARAFE取代了传统的上采样方法,改善了特征图重建,显著减少了模糊和伪影。在性能评估中,BD-YOLOv8s达到了86.2%的mAP@0.5和56%的mAP@0.5:0.95,比基线分别高出5.3%和5.7%。这意味着误报和漏检都大幅减少,最终整体精度得到提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6902/11319330/85eccf2f92d6/41598_2024_69722_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验