Suppr超能文献

通过咔唑二聚体中的卤素工程实现室温磷光

Unlocking the Room Temperature Phosphorescence through Halogen Engineering in Carbazole Dimer.

作者信息

Sivanarayanan Jibin, Vinod Kavya, Benoy Anitta, Hariharan Mahesh

机构信息

School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala-P. O., Vithura, Thiruvananthapuram, 695551, India.

出版信息

Chemistry. 2025 Jun 3;31(31):e202500635. doi: 10.1002/chem.202500635. Epub 2025 May 2.

Abstract

Room-temperature phosphorescence (RTP) in metal-free organic materials offers immense potential for advanced optoelectronic applications. However, the rational design and fine-tuning of RTP remain challenging due to the complex correlation between molecular structure and photophysical processes. Herein, we explored the impact of intersystem crossing (ISC), spin-orbit coupling (SOC), and halogen interactions to promote RTP in crystalline brominated carbazole dimer (BrCz-D). In contrast, the unsubstituted analogue, carbazole dimer (Cz-D) exhibits thermally activated delayed fluorescence (TADF) under ambient conditions. Femtosecond transient absorption (fsTA) spectroscopy measurements confirmed the population of triplet manifolds in both dimers. Bromine substitution significantly enhances spin-orbit coupling (V = 14.94 cm⁻¹), enabling efficient ISC and robust RTP in BrCz-D. Enhanced RTP in crystalline BrCz-D is attributed to unique halogen interactions, including Br···Br, C···Br, and H···Br, within the crystal lattice. Such halogen interactions are negligible in the solution state, accounting for the lack of RTP under ambient conditions. The present work highlights the critical role of SOC and halogen bonding in achieving efficient RTP for designing high-performance organic phosphorescent materials through crystallochemistry.

摘要

无金属有机材料中的室温磷光(RTP)在先进光电器件应用方面具有巨大潜力。然而,由于分子结构与光物理过程之间存在复杂的相关性,RTP的合理设计和精细调控仍然具有挑战性。在此,我们探究了系间窜越(ISC)、自旋 - 轨道耦合(SOC)和卤素相互作用对促进结晶溴代咔唑二聚体(BrCz - D)中RTP的影响。相比之下,未取代的类似物咔唑二聚体(Cz - D)在环境条件下表现出热激活延迟荧光(TADF)。飞秒瞬态吸收(fsTA)光谱测量证实了两种二聚体中三重态的布居。溴取代显著增强了自旋 - 轨道耦合(V = 14.94 cm⁻¹),使得BrCz - D中能够实现高效的ISC和稳定的RTP。结晶态BrCz - D中增强的RTP归因于晶格内独特的卤素相互作用,包括Br···Br、C···Br和H···Br。这种卤素相互作用在溶液状态下可忽略不计,这解释了在环境条件下缺乏RTP的原因。本工作强调了SOC和卤素键合在通过晶体化学设计高性能有机磷光材料以实现高效RTP方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验