Cui Yibo, Lin Jiawei, Liu Kunjie, Shao Yuhe, Zhao Dong, Guo Zhongnan, Zhao Jing, Xia Zhiguo, Liu Quanlin
The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China.
Chem Sci. 2025 Apr 10;16(19):8291-8301. doi: 10.1039/d5sc00931f. eCollection 2025 May 14.
Organic-inorganic metal halides with tunable and state room-temperature phosphorescence (RTP) properties in advanced luminescent materials have received broad interest. Herein, 2-(methylamino)pyridine (MAP), 2-[(methylamino)methyl]pyridine (MAMP), and 2-(2-methylaminoethyl)pyridine (MAEP) were designed and hybridized with Zn and Cl/Br, yielding 11 hybrid materials. MAP-based compounds, with a narrow bandgap (3.57 eV), exhibit limited RTP due to inefficient intersystem crossing (ISC) and unstable triplet excitons. In contrast, MAMP (4.49 eV)- and MAEP (4.50 eV)-based compounds achieve enhanced RTP through bandgap alignment with Zn halides, enabling efficient energy transfer, ISC, and triplet exciton stabilization strong hydrogen bonding and π-conjugation effects. Covalent bonding in MAMP and MAEP compounds provides greater rigidity and exciton stability than hydrogen-bonded systems, resulting in prolonged afterglow durations, while Br-bonding enhances ISC and spin-orbit coupling (SOC), and the weak interactions increase non-radiative decay, further reducing afterglow duration. Density functional theory calculations confirm the enhanced SOC in MAMP and MAEP compounds, further improving RTP efficiency. This work demonstrates the precise control of RTP properties, highlighting the potential in advanced anti-counterfeiting and emerging photonics applications.
具有可调谐室温磷光(RTP)特性的有机-无机金属卤化物在先进发光材料中受到了广泛关注。在此,设计了2-(甲氨基)吡啶(MAP)、2-[(甲氨基)甲基]吡啶(MAMP)和2-(2-甲氨基乙基)吡啶(MAEP),并将它们与锌和氯/溴进行杂化,得到了11种杂化材料。基于MAP的化合物带隙较窄(3.57 eV),由于体系间窜越(ISC)效率低下和三重态激子不稳定,其RTP有限。相比之下,基于MAMP(4.49 eV)和MAEP(4.50 eV)的化合物通过与卤化锌的带隙匹配实现了增强的RTP,从而实现了有效的能量转移、ISC和三重态激子稳定 强大的氢键和π共轭效应。MAMP和MAEP化合物中的共价键比氢键体系提供了更大的刚性和激子稳定性,导致余辉持续时间延长,而Br键增强了ISC和自旋-轨道耦合(SOC),弱相互作用增加了非辐射衰减,进一步缩短了余辉持续时间。密度泛函理论计算证实了MAMP和MAEP化合物中SOC的增强,进一步提高了RTP效率。这项工作展示了对RTP特性的精确控制,突出了其在先进防伪和新兴光子学应用中的潜力。