Guo Dongxu, Sun Jie, Wang Chen, Quan Haijia, Lu Hongdi, Wei Yingjin, Sun Chenglin, Wang Shenghan
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China.
Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202505102. doi: 10.1002/anie.202505102. Epub 2025 May 5.
The rechargeable aqueous Zn||MnO batteries have been extensively explored, but the electrochemical reaction mechanisms, especially in terms of Mn/MnO dissolution/deposition and Zn/H intercalation chemistry, are still not fully understood. Herein, a Zn||MnO-based battery system is constructed and the variation of the battery composition is skillfully regulated by the separation of variables. The possibility of Zn/H intercalation chemistry is ruled out and the dominance of the dissolution/deposition mechanism is strongly demonstrated. This study confirms that the chemistry of the controversial double-discharge platform is a dissolution reaction, determined by different proton concentrations and zinc ions hydrolysis. Discharge Plateau I is the MnO dissolution dominated by the surplus H in the electrolyte, while Discharge Plateau II is the smooth discharge plateau resulting from the hydrolysis of Zn releasing protons when the proton concentration decreases to the point of Zn(OH) generation. This work provides a better understanding of the dissolution/deposition mechanism of Zn||MnO and paves the way for the practical application of manganese-based aqueous batteries. It also provides a comprehensive method to study the mechanism of electrochemical reactions.
可充电水系锌锰电池已得到广泛研究,但其电化学反应机制,尤其是锰/二氧化锰的溶解/沉积以及锌/氢的嵌入化学过程,仍未被完全理解。在此,构建了一种基于锌锰的电池体系,并通过变量分离巧妙地调控了电池组成的变化。排除了锌/氢嵌入化学的可能性,并有力地证明了溶解/沉积机制的主导地位。本研究证实,有争议的双放电平台的化学过程是一种溶解反应,由不同的质子浓度和锌离子水解决定。放电平台I是由电解液中过剩的氢主导的二氧化锰溶解过程,而放电平台II是当质子浓度降低到产生氢氧化锌的程度时,锌水解释放质子导致的平稳放电平台。这项工作有助于更好地理解锌锰电池的溶解/沉积机制,为锰基水系电池的实际应用铺平了道路。它还提供了一种研究电化学反应机制的综合方法。