Suppr超能文献

GraphTransNet:使用图增强蛋白质语言模型预测癫痫相关基因。

GraphTransNet: predicting epilepsy-related genes using a graph-augmented protein language model.

作者信息

Xie Junfeng, Li Wei, You Hairu, Zhang Dafang

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

School of Engineering, The University of Sydney, Sydney, NSW, Australia.

出版信息

Front Pharmacol. 2025 Apr 1;16:1584625. doi: 10.3389/fphar.2025.1584625. eCollection 2025.

Abstract

Epilepsy, a complex neurological disorder characterised by recurrent seizures and significant genetic heterogeneity, presents considerable challenges form accurate diagnosis and drug target identification. While traditional genomewide association studies (GWAS) and sequencing technologies have advanced our understanding of epilepsy-related gene targets, they often struggle to identify novel and rare variants crucial for precise diagnosis and targeted drug development. The increasing availability of large-scale genomic data, coupled with the power of deep learning, offers a promising avenue for progress. In this work, we introduce GraphTransNet, a novel hybrid neural network model designed for predicting epilepsy-associated gene targets, with direct implications for improved disease diagnosis and therapeutic target identification. GraphTransNet leverages protein language models (specifically ESM) to generate numerical embeddings from gene sequences. These embeddings are then processed by a novel architecture integrating transformer and convolutional neural network (CNN)components to predict epilepsy-related gene targets. Our results demonstrate that GraphTransNet achieves high accuracy in identifying epilepsy targets, outperforming existing predictive tools in terms of both recall and precision metrics for reliable disease diagnosis and effective drug target identification. Rigorous comparisons with established machine learning methods and other deep learning architectures further underscore the efficacy of GraphTransNet. This approach represents a valuable computational tool for advancing epilepsy genetics research, with the potential to contribute to more accurate diagnostic strategies and the discovery of novel drug targets for improved treatment outcomes.

摘要

癫痫是一种复杂的神经系统疾病,其特征为反复发作的癫痫发作以及显著的遗传异质性,在准确诊断和药物靶点识别方面面临着巨大挑战。虽然传统的全基因组关联研究(GWAS)和测序技术增进了我们对癫痫相关基因靶点的理解,但它们往往难以识别对精确诊断和靶向药物开发至关重要的新的和罕见变异。大规模基因组数据的日益丰富,再加上深度学习的强大功能,为取得进展提供了一条充满希望的途径。在这项工作中,我们引入了GraphTransNet,这是一种新颖的混合神经网络模型,旨在预测与癫痫相关的基因靶点,对改善疾病诊断和治疗靶点识别具有直接意义。GraphTransNet利用蛋白质语言模型(特别是ESM)从基因序列生成数值嵌入。然后,这些嵌入通过一种整合了Transformer和卷积神经网络(CNN)组件的新颖架构进行处理,以预测与癫痫相关的基因靶点。我们的结果表明,GraphTransNet在识别癫痫靶点方面具有很高的准确性,在召回率和精确率指标方面均优于现有预测工具,可实现可靠的疾病诊断和有效的药物靶点识别。与既定的机器学习方法和其他深度学习架构进行的严格比较进一步凸显了GraphTransNet的有效性。这种方法是推进癫痫遗传学研究的一种有价值的计算工具,有可能有助于制定更准确的诊断策略,并发现新的药物靶点以改善治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/880b/11996831/99b06d173252/fphar-16-1584625-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验