Suppr超能文献

scDCA:从单细胞RNA测序数据中解析下游功能事件的主要细胞通讯组件

scDCA: deciphering the dominant cell communication assembly of downstream functional events from single-cell RNA-seq data.

作者信息

Ji Boya, Wang Xiaoqi, Wang Xiang, Xu Liwen, Peng Shaoliang

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China.

The Second Xiangya Hospital, Central South University, Yuelu, 410006 Changsha, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae663.

Abstract

Cell-cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment. Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.

摘要

细胞间通讯(CCC)涉及多个发送细胞发出的信号,这些信号共同影响接收细胞中的下游功能过程。目前,缺乏用于量化细胞类型的成对组合对接收细胞中特定功能过程(例如靶基因表达或细胞状态)贡献的计算方法。这一局限性阻碍了对癌症进展潜在机制的理解以及潜在治疗靶点的识别。在此,我们提出了一种基于深度学习的方法scDCA,用于从单细胞RNA测序数据中解析对接收细胞中特定功能事件具有更高影响的主导细胞通讯组合(DCA)。具体而言,scDCA采用多视图图卷积网络在单细胞分辨率下重建CCC景观,然后通过注意力机制解释模型来识别DCA。以晚期肾细胞癌样本为例,scDCA在揭示影响免疫细胞关键基因表达的DCA方面成功应用并得到验证。scDCA还在揭示导致恶性细胞14种典型功能状态变化的DCA方面得到应用和验证。此外,通过比较接受和未接受免疫治疗患者中某些细胞毒性因子的DCA,scDCA被应用并验证以探索临床干预下CCC的改变。总之,scDCA为解析对接收细胞特定功能过程影响最显著的细胞类型组合提供了一种有价值且实用的工具,这对精确癌症治疗具有重要意义。我们的数据和代码可在公共GitHub仓库免费获取:https://github.com/pengsl-lab/scDCA.git。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3964/11653571/2cd6029f1e32/bbae663f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验