Suppr超能文献

脑疾病分类中的归一化与交叉熵连通性

Normalization and cross-entropy connectivity in brain disease classification.

作者信息

Wu Haifeng, Li Shunliang, Zeng Yu

机构信息

School of Electrical and Information Technology, Yunnan Minzu University, Kunming 650504, China.

Yunnan Key Laboratory of Unmanned Autonomous System, Kunming 650504, China.

出版信息

iScience. 2025 Mar 17;28(4):112226. doi: 10.1016/j.isci.2025.112226. eCollection 2025 Apr 18.

Abstract

In resting-state functional magnetic resonance imaging (rs-fMRI), Pearson correlation has traditionally been the dominant method for constructing brain connectivity. This paper introduces an entropy-based connectivity approach utilizing subject-level score normalization, which not only standardizes signal amplitudes across subjects but also preserves interregional signal differences more effectively than Pearson correlation. Furthermore, the proposed method incorporates cross-entropy techniques, offering an advanced perspective on the temporal ordering of signals between brain regions rather than merely capturing their synchronization. Experimental results demonstrate that the proposed subject-normalized cross-joint entropy achieves superior classification accuracy in schizophrenia, mild cognitive impairment, and autism spectrum disorder, outperforming the conventional normalized correlation method by approximately 4%, 6%, and 7%, respectively. Additionally, the observed performance improvement may be attributed to changes in the symmetry of functional connectivity between brain regions-an aspect often overlooked in traditional functional connectivity analyses.

摘要

在静息态功能磁共振成像(rs-fMRI)中,皮尔逊相关性传统上一直是构建脑连接性的主导方法。本文介绍了一种基于熵的连接性方法,该方法利用受试者水平的分数归一化,不仅能对受试者之间的信号幅度进行标准化,而且比皮尔逊相关性更有效地保留区域间信号差异。此外,该方法还纳入了交叉熵技术,为脑区之间信号的时间顺序提供了一个先进的视角,而不仅仅是捕捉它们的同步性。实验结果表明,所提出的受试者归一化交叉联合熵在精神分裂症、轻度认知障碍和自闭症谱系障碍中实现了更高的分类准确率,分别比传统归一化相关方法高出约4%、6%和7%。此外,观察到的性能提升可能归因于脑区之间功能连接性对称性的变化——这是传统功能连接性分析中经常被忽视的一个方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8932/11999650/dc8921095695/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验