Suppr超能文献

基于小波的 rs-fMRI 分形分析在阿尔茨海默病分类中的应用。

Wavelet-Based Fractal Analysis of rs-fMRI for Classification of Alzheimer's Disease.

机构信息

Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

Radiology Department, Hospital UiTM, Sungai Buloh 47000, Malaysia.

出版信息

Sensors (Basel). 2022 Apr 19;22(9):3102. doi: 10.3390/s22093102.

Abstract

The resting-state functional magnetic resonance imaging (rs-fMRI) modality has gained widespread acceptance as a promising method for analyzing a variety of neurological and psychiatric diseases. It is established that resting-state neuroimaging data exhibit fractal behavior, manifested in the form of slow-decaying auto-correlation and power-law scaling of the power spectrum across low-frequency components. With this property, the rs-fMRI signal can be broken down into fractal and nonfractal components. The fractal nature originates from several sources, such as cardiac fluctuations, respiration and system noise, and carries no information on the brain's neuronal activities. As a result, the conventional correlation of rs-fMRI signals may not accurately reflect the functional dynamic of spontaneous neuronal activities. This problem can be solved by using a better representation of neuronal activities provided by the connectivity of nonfractal components. In this work, the nonfractal connectivity of rs-fMRI is used to distinguish Alzheimer's patients from healthy controls. The automated anatomical labeling (AAL) atlas is used to extract the blood-oxygenation-level-dependent time series signals from 116 brain regions, yielding a 116 × 116 nonfractal connectivity matrix. From this matrix, significant connections evaluated using the -value are selected as an input to a classifier for the classification of Alzheimer's vs. normal controls. The nonfractal-based approach provides a good representation of the brain's neuronal activity. It outperformed the fractal and Pearson-based connectivity approaches by 16.4% and 17.2%, respectively. The classification algorithm developed based on the nonfractal connectivity feature and support vector machine classifier has shown an excellent performance, with an accuracy of 90.3% and 83.3% for the XHSLF dataset and ADNI dataset, respectively. For further validation of our proposed work, we combined the two datasets (XHSLF+ADNI) and still received an accuracy of 90.2%. The proposed work outperformed the recently published work by a margin of 8.18% and 11.2%, respectively.

摘要

静息态功能磁共振成像(rs-fMRI)技术已被广泛认可,是分析各种神经和精神疾病的一种很有前途的方法。已经确定,静息态神经影像学数据表现出分形行为,其形式为低频成分的自相关缓慢衰减和幂律谱的标度。利用这一特性,可以将 rs-fMRI 信号分解为分形和非分形成分。分形性质源自多个来源,例如心脏波动、呼吸和系统噪声,并且不携带大脑神经元活动的信息。因此,常规的 rs-fMRI 信号相关可能无法准确反映自发神经元活动的功能动态。这个问题可以通过使用非分形成分的连接提供的更好的神经元活动表示来解决。在这项工作中,使用 rs-fMRI 的非分形连接来区分阿尔茨海默病患者和健康对照者。使用自动解剖标记(AAL)图谱从 116 个脑区提取血氧水平依赖时间序列信号,得到一个 116×116 的非分形连接矩阵。从这个矩阵中,使用 - 值评估的显著连接被选为分类器的输入,用于阿尔茨海默病与正常对照的分类。基于非分形的方法提供了大脑神经元活动的良好表示。它分别比分形和 Pearson 连接方法表现更好,提高了 16.4%和 17.2%。基于非分形连接特征和支持向量机分类器开发的分类算法表现出了优异的性能,在 XHSLF 数据集和 ADNI 数据集上的准确率分别为 90.3%和 83.3%。为了进一步验证我们提出的工作,我们将两个数据集(XHSLF+ADNI)结合起来,仍然获得了 90.2%的准确率。我们的工作比最近发表的工作分别提高了 8.18%和 11.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3729/9100383/fc6098a2dec5/sensors-22-03102-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验