Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, College of Electronic and Information, Southwest Minzu University, Chengdu, China.
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Hum Brain Mapp. 2023 Jan;44(1):94-118. doi: 10.1002/hbm.26129. Epub 2022 Nov 10.
Adult attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCHZ), and bipolar disorder (BP) have common symptoms and differences, and the underlying neural mechanisms are still unclear. This article will thoroughly discuss the differences between ADHD, BP, and SCHZ (31 healthy control and 31 ADHD; 34 healthy control and 34 BP; 42 healthy control and 42 SCHZ) relative to healthy subjects in combination with three atlases (et al., the Brainnetome atlas, the Dosenbach atlas, the Power atlas) and seven entropies (et al., approximate entropy (ApEn), sample entropy (SaEn), permutation entropy (PeEn), fuzzy entropy (FuEn), differential entropy (DiffEn), range entropy (RaEn), and dispersion entropy (DispEn)), as well as the prominent significant brain regions, in the hope of giving information that is more suitable for analyzing different diseases' entropy. First, the reliability (et al., intraclass correlation coefficient [ICC]) of seven kinds of entropy is calculated and analyzed by using the MSC dataset (10 subjects and 100 sessions in total) and simulation data; then, seven types of entropy and multiscale entropy expanded based on seven kinds of entropy are used to explore the differences and brain regions of ADHD, BP, and SCHZ relative to healthy subjects; and finally, by verifying the classification performance of the seven information entropies on ADHD, BP, and SCHZ, the effectiveness of the seven entropy methods is evaluated through these three methods. The core brain regions that affect the classification are given, and DiffEn performed best on ADHD, SaEn for BP, and RaEn for SCHZ.
成人注意缺陷多动障碍(ADHD)、精神分裂症(SCHZ)和双相情感障碍(BP)具有共同的症状和差异,其潜在的神经机制仍不清楚。本文将结合三个图谱(脑网络图谱、多尺度图谱、Power 图谱)和七种熵(近似熵(ApEn)、样本熵(SaEn)、排列熵(PeEn)、模糊熵(FuEn)、微分熵(DiffEn)、范围熵(RaEn)和离散熵(DispEn)),以及突出的显著脑区,彻底讨论 ADHD、BP 和 SCHZ 与健康受试者之间的差异(31 名健康对照和 31 名 ADHD;34 名健康对照和 34 名 BP;42 名健康对照和 42 名 SCHZ),希望提供更适合分析不同疾病熵的信息。首先,使用 MSC 数据集(共 10 个受试者和 100 个扫描)和模拟数据计算和分析七种熵的可靠性(如,组内相关系数 [ICC]);然后,使用七种熵扩展的多尺度熵来探索 ADHD、BP 和 SCHZ 与健康受试者的差异和脑区;最后,通过验证七种信息熵对 ADHD、BP 和 SCHZ 的分类性能,通过这三种方法评估七种熵方法的有效性。给出了影响分类的核心脑区,DiffEn 在 ADHD 上表现最好,SaEn 对 BP,RaEn 对 SCHZ。