Suppr超能文献

整合放射组学与免疫浸润分析以解读肺腺癌的免疫治疗疗效

Integrated radiomics and immune infiltration analysis to decipher immunotherapy efficacy in lung adenocarcinoma.

作者信息

Lei Yiyi, Fan Wenjin, Liu Beizhan, Liao Yuxuan, Liu Chenxi, Xue Shengjie, Zhou Dawei, Wang Hongyi, Zhang Qiang

机构信息

Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.

Xiangya School of Medicine, Central South University, Changsha, China.

出版信息

Quant Imaging Med Surg. 2025 Apr 1;15(4):3123-3147. doi: 10.21037/qims-24-130. Epub 2025 Mar 28.

Abstract

BACKGROUND

Research in recent years has witnessed unprecedented improvements in immunotherapy, especially immune checkpoint blockade (ICB) for the treatment of lung adenocarcinoma (LUAD) patients. Nevertheless, due to the heterogeneity of immunotherapy response, reliable biomarkers are urgently needed to guide precision cancer therapy. In this study, we aimed to identify immune subtypes in LUAD and develop a radiogenomic model to improve immunotherapy predictive accuracy.

METHODS

In this study, clinical data of LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) databases, and immune subtypes were identified using the ConsensusClusterPlus package in R. Biological, genomic, and epigenomic distinctions were compared. The TCGA cohort and clinical cohort from the Third Xiangya Hospital were utilized to demonstrate no significant differences of survival probability between sexes. Feature extraction and definition were conducted from 103 computed tomography (CT) images from The Cancer Imaging Archive (TCIA) dataset via the "PyRadiomics" embedded in Python. A series of machine learning techniques were applied to build a radiogenomic model.

RESULTS

Two LUAD subtypes with different molecular and immune characteristics were identified. Significant differences in biological, genomic, and epigenomic distinctions among the two subtypes were observed (P<0.05). The immune subtype A participated in pathways related to immune activation and displayed a higher tumor microenvironment (TME) score (P<0.001) with a better prognosis of LUAD [overall survival (OS), P=0.037; disease-specific survival (DSS), P=0.034]. Besides, the model appears to show better fit for females (P=0.015) than for males (P=0.641). Our constructed radiogenomic model incorporating 12 radiomics features displayed satisfactory potential to facilitate the predictive accuracy of immunotherapy in LUAD [test area under the curve (AUC) =0.89; train AUC =0.95].

CONCLUSIONS

Our study presented a promising avenue to harness the rich radiomics data to identify the specific immune subtype and integrate it into the existing clinical decision-making system to facilitate the predictive accuracy of immunotherapy in LUAD.

摘要

背景

近年来,免疫疗法取得了前所未有的进展,尤其是免疫检查点阻断(ICB)用于治疗肺腺癌(LUAD)患者。然而,由于免疫疗法反应的异质性,迫切需要可靠的生物标志物来指导精准癌症治疗。在本研究中,我们旨在识别LUAD中的免疫亚型,并开发一种放射基因组模型以提高免疫疗法的预测准确性。

方法

在本研究中,从癌症基因组图谱(TCGA)数据库下载LUAD患者的临床数据,并使用R语言中的ConsensusClusterPlus软件包识别免疫亚型。比较生物学、基因组和表观基因组差异。利用TCGA队列和来自中南大学湘雅三医院的临床队列来证明性别之间生存概率无显著差异。通过Python中嵌入的“PyRadiomics”从癌症影像存档(TCIA)数据集中的103张计算机断层扫描(CT)图像进行特征提取和定义。应用一系列机器学习技术构建放射基因组模型。

结果

识别出两种具有不同分子和免疫特征的LUAD亚型。观察到两种亚型在生物学、基因组和表观基因组差异方面存在显著差异(P<0.05)。免疫亚型A参与与免疫激活相关的通路,显示出较高的肿瘤微环境(TME)评分(P<0.001),LUAD的预后较好[总生存期(OS),P=0.037;疾病特异性生存期(DSS),P=0.034]。此外,该模型对女性(P=0.015)的拟合似乎比对男性(P=0.641)更好。我们构建的包含12个放射组学特征的放射基因组模型在提高LUAD免疫疗法预测准确性方面显示出令人满意的潜力[测试曲线下面积(AUC)=0.89;训练AUC=0.95]。

结论

我们的研究提供了一条有前景的途径,利用丰富的放射组学数据识别特定的免疫亚型,并将其整合到现有的临床决策系统中,以提高LUAD免疫疗法的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/11994542/c09b64a74583/qims-15-04-3123-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验