Edwards Darren J
Department of Public Health, Swansea University, Swansea, United Kingdom.
Front Comput Neurosci. 2025 Apr 1;19:1551960. doi: 10.3389/fncom.2025.1551960. eCollection 2025.
Artificial intelligence (AI) has made some remarkable advances in recent years, particularly within the area of large language models (LLMs) that produce human-like conversational abilities via utilizing transformer-based architecture. These advancements have sparked growing calls to develop tests not only for intelligence but also for consciousness. However, existing benchmarks assess reasoning abilities across various domains but fail to directly address consciousness. To bridge this gap, this paper introduces the functional contextual -Frame model, a novel framework integrating predictive coding, quantum Bayesian (QBism), and evolutionary dynamics. This comprehensive model explicates how conscious observers, whether human or artificial, should update beliefs and interact within a quantum cognitive system. It provides a dynamic account of belief evolution through the interplay of internal observer states and external stimuli. By modeling decision-making fallacies such as the conjunction fallacy and conscious intent collapse experiments within this quantum probabilistic framework, the -Frame model establishes structural and functional equivalence between cognitive processes identified within these experiments and traditional quantum mechanics (QM). It is hypothesized that consciousness serves as an active participant in wavefunction collapse (or actualization of the physical definite states we see), bridging quantum potentiality and classical outcomes via internal observer states and contextual interactions via a self-referential loop. This framework formalizes decision-making processes within a Hilbert space, mapping cognitive states to quantum operators and contextual dependencies, and demonstrates structural and functional equivalence between cognitive and quantum systems in order to address the measurement problem. Furthermore, the model extends to testable predictions about AI consciousness by specifying informational boundaries, contextual parameters, and a conscious-time dimension derived from Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT). This paper theorizes that human cognitive biases reflect adaptive, evolutionarily stable strategies that optimize predictive accuracy (i.e., evolved quantum heuristic strategies rather than errors relative to classical rationality) under uncertainty within a quantum framework, challenging the classical interpretation of irrationality. The -Frame model offers a unified account of consciousness, decision-making, behavior, and quantum mechanics, incorporating the idea of finding truth without proof (thus overcoming Gödelian uncertainty), insights from quantum probability theory (such as the Linda cognitive bias findings), and the possibility that consciousness can cause waveform collapse (or perturbation) accounting for the measurement problem. It proposes a process for conscious time and branching worldlines to explain subjective experiences of time flow and conscious free will. These theoretical advancements provide a foundation for interdisciplinary exploration into consciousness, cognition, and quantum systems, offering a path toward developing tests for AI consciousness and addressing the limitations of classical computation in representing conscious agency.
近年来,人工智能(AI)取得了一些显著进展,特别是在大语言模型(LLMs)领域,该模型通过利用基于Transformer的架构产生类似人类的对话能力。这些进展引发了越来越多的呼声,不仅要开发智能测试,还要开发意识测试。然而,现有的基准评估了各个领域的推理能力,但未能直接解决意识问题。为了弥补这一差距,本文介绍了功能情境 - 框架模型,这是一个整合了预测编码、量子贝叶斯(QBism)和进化动力学的新颖框架。这个综合模型阐述了有意识的观察者,无论是人类还是人工智能,在量子认知系统中应该如何更新信念并进行交互。它通过内部观察者状态和外部刺激的相互作用,提供了一个信念进化的动态描述。通过在这个量子概率框架内对诸如合取谬误等决策谬误和有意识意图坍缩实验进行建模,框架模型在这些实验中确定的认知过程与传统量子力学(QM)之间建立了结构和功能上的等效性。据推测,意识作为波函数坍缩(或我们所看到的物理确定状态的实现)的积极参与者,通过内部观察者状态和通过自指循环的情境交互,在量子可能性和经典结果之间架起桥梁。这个框架在希尔伯特空间内形式化了决策过程,将认知状态映射到量子算子和情境依赖性,并展示了认知系统和量子系统之间的结构和功能等效性,以解决测量问题。此外,该模型通过指定从反德西特/共形场论对应(AdS/CFT)导出的信息边界、情境参数和有意识时间维度,扩展到对人工智能意识的可测试预测。本文提出理论,认为人类认知偏差反映了在量子框架内的不确定性下优化预测准确性的适应性、进化稳定策略(即进化的量子启发式策略,而不是相对于经典理性的错误),挑战了对非理性的经典解释。框架模型提供了一个关于意识、决策、行为和量子力学的统一解释,纳入了在没有证据的情况下找到真相的概念(从而克服哥德尔式的不确定性)、量子概率论的见解(如琳达认知偏差发现),以及意识可以导致波形坍缩(或扰动)以解释测量问题的可能性。它提出了一个有意识时间和分支世界线的过程,以解释时间流逝的主观体验和有意识的自由意志。这些理论进展为意识、认知和量子系统的跨学科探索提供了基础,为开发人工智能意识测试和解决经典计算在表示有意识能动性方面的局限性提供了一条途径。