De Angeli Pietro, Spaag Salome, Shliaga Stefanida, Flores-Tufiño Arturo, Ritter Malte, Nasri Masoud, Stingl Katarina, Kühlewein Laura, Wissinger Bernd, Kohl Susanne
University Hospital Tübingen, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany.
University Hospital Tübingen, Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, 72076 Tübingen, Germany.
Mol Ther Nucleic Acids. 2025 Mar 21;36(2):102523. doi: 10.1016/j.omtn.2025.102523. eCollection 2025 Jun 10.
Missplicing of transcripts is a frequent molecular mechanism in a wide range of inherited genetic conditions. Therapeutic splicing correction can be achieved through antisense oligonucleotides; however, they do not enable permanent correction. Concurrently, CRISPR-Cas9 approaches often rely on dual-guide RNA-induced larger deletions-for instance, pseudoexons removal-which raises concerns about higher genotoxicity from multiple double-strand breaks. We therefore investigated single-guide RNA CRISPR-Cas9 approaches to address the recurrent pathogenic :c.7595-2144A>G deep-intronic variant. Using single-guide RNAs with either Cas9 or Cas9 fused to TREX2 (EDCas9), we restored correct splicing in a minigene assay and patient-derived fibroblasts. Cas9 with single-guide RNAs generated small indels, but their frequency and extent varied between models, resulting in variable productivity with respect to splicing rescue efficacy. In contrast, EDCas9 produced larger, directional deletions with a consistent profile across both models, effectively disrupting missplicing-inducing sequences and ensuring robust splicing correction. Off-target assessments revealed a safe profile for both Cas9 and EDCas9, with EDCas9 additionally preventing targeted translocations. Virus-like particles delivered EDCas9 and a lead gRNA, demonstrating suitability as a transient delivery system. In conclusion, EDCas9 emerges as a flexible and powerful editing approach for addressing the pathogenic :c.7595-2144A>G variant, paving the way for further therapeutic investigation.
转录本的错误剪接是多种遗传性疾病中常见的分子机制。通过反义寡核苷酸可以实现治疗性剪接校正;然而,它们不能实现永久性校正。同时,CRISPR-Cas9方法通常依赖双引导RNA诱导更大的缺失,例如去除假外显子,这引发了对多个双链断裂产生更高基因毒性的担忧。因此,我们研究了单引导RNA CRISPR-Cas9方法来解决复发性致病性:c.7595-2144A>G内含子深处变体。使用与Cas9或与TREX2融合的Cas9(EDCas9)的单引导RNA,我们在小基因检测和患者来源的成纤维细胞中恢复了正确的剪接。带有单引导RNA的Cas9产生了小的插入缺失,但它们的频率和程度在不同模型之间有所不同,导致在剪接拯救功效方面的生产力各不相同。相比之下,EDCas9产生了更大的定向缺失,在两个模型中具有一致的特征,有效地破坏了诱导错误剪接的序列并确保了强大的剪接校正。脱靶评估显示Cas9和EDCas9都具有安全特征,EDCas9还额外防止了靶向易位。病毒样颗粒递送了EDCas9和一种先导gRNA,证明其适合作为瞬时递送系统。总之,EDCas9成为一种灵活且强大的编辑方法,用于解决致病性:c.7595-2144A>G变体,为进一步的治疗研究铺平了道路。