Suppr超能文献

Cas9/gRNA靶向切除导致囊性纤维化的内含子深处剪接突变可恢复CFTR mRNA的正常剪接。

Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA.

作者信息

Sanz David J, Hollywood Jennifer A, Scallan Martina F, Harrison Patrick T

机构信息

Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland.

School of Microbiology, University College Cork, Cork, Ireland.

出版信息

PLoS One. 2017 Sep 1;12(9):e0184009. doi: 10.1371/journal.pone.0184009. eCollection 2017.

Abstract

Cystic Fibrosis is an autosomal recessive disorder caused by mutations in the CFTR gene. CRISPR mediated, template-dependent homology-directed gene editing has been used to correct the most common mutation, c.1521_1523delCTT / p.Phe508del (F508del) which affects ~70% of individuals, but the efficiency was relatively low. Here, we describe a high efficiency strategy for editing of three different rare CFTR mutations which together account for about 3% of individuals with Cystic Fibrosis. The mutations cause aberrant splicing of CFTR mRNA due to the creation of cryptic splice signals that result in the formation of pseudoexons containing premature stop codons c.1679+1634A>G (1811+1.6kbA>G) and c.3718-2477C>T (3849+10kbC>T), or an out-of-frame 5' extension to an existing exon c.3140-26A>G (3272-26A>G). We designed pairs of Cas9 guide RNAs to create targeted double-stranded breaks in CFTR either side of each mutation which resulted in high efficiency excision of the target genomic regions via non-homologous end-joining repair. When evaluated in a mini-gene splicing assay, we showed that targeted excision restored normal splicing for all three mutations. This approach could be used to correct aberrant splicing signals or remove disruptive transcription regulatory motifs caused by deep-intronic mutations in a range of other genetic disorders.

摘要

囊性纤维化是一种由CFTR基因突变引起的常染色体隐性疾病。CRISPR介导的、依赖模板的同源定向基因编辑已被用于纠正最常见的突变,即c.1521_1523delCTT / p.Phe508del(F508del),该突变影响约70%的患者,但效率相对较低。在此,我们描述了一种高效策略,用于编辑三种不同的罕见CFTR突变,这些突变共同约占囊性纤维化患者的3%。这些突变由于产生隐蔽剪接信号导致CFTR mRNA异常剪接,从而形成含有提前终止密码子的假外显子,即c.1679+1634A>G(1811+1.6kbA>G)和c.3718-2477C>T(3849+10kbC>T),或者导致现有外显子的框外5'延伸,即c.3140-26A>G(3272-26A>G)。我们设计了成对的Cas9引导RNA,在每个突变两侧的CFTR中产生靶向双链断裂,通过非同源末端连接修复高效切除目标基因组区域。在小基因剪接试验中评估时,我们表明靶向切除恢复了所有三种突变的正常剪接。这种方法可用于纠正异常剪接信号或去除一系列其他遗传疾病中由内含子深处突变引起的干扰性转录调控基序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4dd/5581164/277c5dfa7626/pone.0184009.g001.jpg

相似文献

1
Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA.
PLoS One. 2017 Sep 1;12(9):e0184009. doi: 10.1371/journal.pone.0184009. eCollection 2017.
4
Molecular and functional correction of a deep intronic splicing mutation in by CRISPR-Cas9 gene editing.
Mol Ther Methods Clin Dev. 2023 Oct 18;31:101140. doi: 10.1016/j.omtm.2023.101140. eCollection 2023 Dec 14.
9
Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation.
J Cyst Fibros. 2022 Jan;21(1):181-187. doi: 10.1016/j.jcf.2021.05.014. Epub 2021 Jun 5.
10
Exon-skipping antisense oligonucleotides for cystic fibrosis therapy.
Proc Natl Acad Sci U S A. 2022 Jan 18;119(3). doi: 10.1073/pnas.2114858118.

引用本文的文献

1
The Interface of Gene Editing with Regenerative Medicine.
Engineering (Beijing). 2025 Mar;46:73-100. doi: 10.1016/j.eng.2024.10.019. Epub 2024 Nov 30.
3
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.
Acta Pharm Sin B. 2025 May;15(5):2301-2322. doi: 10.1016/j.apsb.2025.03.023. Epub 2025 Mar 13.
4
Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in .
Mol Ther Nucleic Acids. 2024 Sep 26;35(4):102345. doi: 10.1016/j.omtn.2024.102345. eCollection 2024 Dec 10.
5
Temporal restriction of Cas9 expression improves CRISPR-mediated deletion efficacy and fidelity.
Mol Ther Nucleic Acids. 2024 Mar 11;35(2):102172. doi: 10.1016/j.omtn.2024.102172. eCollection 2024 Jun 11.
6
Functional Consequences of CFTR Interactions in Cystic Fibrosis.
Int J Mol Sci. 2024 Mar 16;25(6):3384. doi: 10.3390/ijms25063384.
7
Genetic surgery for a cystic fibrosis-causing splicing mutation.
Mol Ther Methods Clin Dev. 2024 Jan 2;32(1):101177. doi: 10.1016/j.omtm.2023.101177. eCollection 2024 Mar 14.
8
Molecular and functional correction of a deep intronic splicing mutation in by CRISPR-Cas9 gene editing.
Mol Ther Methods Clin Dev. 2023 Oct 18;31:101140. doi: 10.1016/j.omtm.2023.101140. eCollection 2023 Dec 14.
10
The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold?
Expert Opin Pharmacother. 2023 Sep-Dec;24(14):1545-1565. doi: 10.1080/14656566.2023.2230129. Epub 2023 Jul 3.

本文引用的文献

1
Deep intronic mutations and human disease.
Hum Genet. 2017 Sep;136(9):1093-1111. doi: 10.1007/s00439-017-1809-4. Epub 2017 May 12.
2
Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites.
Am J Hum Genet. 2017 May 4;100(5):751-765. doi: 10.1016/j.ajhg.2017.04.001.
3
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells.
Sci Transl Med. 2017 Jan 25;9(374). doi: 10.1126/scitranslmed.aaj2013.
4
Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis.
Thorax. 2017 Feb;72(2):137-147. doi: 10.1136/thoraxjnl-2016-208406. Epub 2016 Nov 16.
6
gene transfer with AAV improves early cystic fibrosis pig phenotypes.
JCI Insight. 2016 Sep 8;1(14):e88728. doi: 10.1172/jci.insight.88728.
7
Genetic medicines for CF: Hype versus reality.
Pediatr Pulmonol. 2016 Oct;51(S44):S5-S17. doi: 10.1002/ppul.23543.
8
Lentiviral-mediated phenotypic correction of cystic fibrosis pigs.
JCI Insight. 2016 Sep 8;1(14). doi: 10.1172/jci.insight.88730.
9
A multifunctional AAV-CRISPR-Cas9 and its host response.
Nat Methods. 2016 Oct;13(10):868-74. doi: 10.1038/nmeth.3993. Epub 2016 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验