Suppr超能文献

用于高性能可充电水系锌离子电池的葡萄糖插层诱导的1T-G-MoS杂化物

Glucose intercalation-induced 1T-G-MoS hybrids for high-performance rechargeable aqueous zinc-ion batteries.

作者信息

Sun Jia, Bai Zhiman, Tang Kun, Dai Peng, Jiang Tongtong, Wu Mingzai

机构信息

School of Materials Science and Engineering, Key Laboratory of Photoelectric Conversion Energy Materials and Devices of Anhui Province, Anhui university, Hefei 230601, China.

出版信息

Nanoscale. 2025 May 9;17(18):11530-11538. doi: 10.1039/d5nr00690b.

Abstract

Owing to 1T phase MoS (1T-MoS) possessing higher electron conductivity than 2H phase MoS (2H-MoS), 1T-MoS is considered as a more promising electrode material for aqueous zinc-ion batteries (AZIBs). Herein, a glucose intercalation-assisted induction strategy is employed to prepare stable 1T-rich MoS hybrids (1T-G-MoS) for boosting zinc storage performance. The glucose is intercalated into MoS through a one-step facile hydrothermal method, which expands the interlayer spacing and improves the hydrophilicity, facilitating reversible insertion/extraction kinetics of Zn ions. Density functional theory (DFT) calculations indicate that the intercalated glucose can donate electrons to the Mo atoms, triggering reorganization of the Mo 4d orbitals and inducing phase transformation of MoS from 2H to 1T phase, thereby increasing the electron conductivity of MoS and promoting electron transfer. The enhanced electron and ion transfer as well as the more exposed active sites accelerate the reaction kinetics, leading to an improved electrochemical performance for AZIBs. The obtained 1T-G-MoS electrode exhibits a high discharge capacity of 192.62 mA h g at 0.1 A g and superior rate performance. Moreover, the enlarged interlayer spacing alleviates changes in the volume of 1T-G-MoS during the discharging/charging processes, giving it excellent cycling stability. The capacity retention can still reach 71.98% even after 500 cycles at 1 A g. This work deeply investigates the MoS phase transformation mechanism and its effect on the reaction kinetics, providing a promising solution for high-performance MoS-based AZIBs.

摘要

由于1T相二硫化钼(1T-MoS)比2H相二硫化钼(2H-MoS)具有更高的电子传导率,1T-MoS被认为是一种更有前景的水系锌离子电池(AZIBs)电极材料。在此,采用葡萄糖插层辅助诱导策略制备稳定的富含1T的二硫化钼杂化物(1T-G-MoS)以提升锌存储性能。葡萄糖通过一步简便水热法插层到二硫化钼中,这扩大了层间距并提高了亲水性,促进了锌离子的可逆嵌入/脱出动力学。密度泛函理论(DFT)计算表明,插层的葡萄糖可以向钼原子提供电子,引发钼4d轨道的重新排列并诱导二硫化钼从2H相转变为1T相,从而提高二硫化钼的电子传导率并促进电子转移。增强的电子和离子转移以及更多暴露的活性位点加速了反应动力学,导致AZIBs的电化学性能得到改善。所制备的1T-G-MoS电极在0.1 A g下表现出192.62 mA h g的高放电容量和优异的倍率性能。此外,扩大的层间距减轻了1T-G-MoS在充放电过程中的体积变化,赋予其优异的循环稳定性。即使在1 A g下循环500次后,容量保持率仍可达到71.98%。这项工作深入研究了二硫化钼的相变机制及其对反应动力学的影响,为高性能的基于二硫化钼的AZIBs提供了一种有前景的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验