Yan Jiawei, Lin Yalan, Lin Mingxiong, Huang Xinlian, Dong Weilong, Huang Haoyang, Zhuang Zanyong, Yu Yan
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China.
Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China.
Small. 2025 Jun;21(22):e2502118. doi: 10.1002/smll.202502118. Epub 2025 Apr 16.
Single-atom catalysts (SACs) anchored on defective supports offer exceptional catalytic efficiency but face challenges in stabilizing isolated metal atoms and optimizing metal-support interactions. Here, a defect-driven strategy is reported to construct a 3D dendritic SAC comprising interwoven ultrathin TiO nanowires (NWs) with abundant oxygen vacancies (OVs) that stabilize atomically dispersed cobalt (Co) sites. Using hydrothermal synthesis followed by acid etching and calcination, Ti─Co─Ti motifs are engineered at OVs site. The 3D architecture provides multiscale porosity and charge transport, achieving syngas production rates of 28.4 mmol g·h (CO) and 13.9 mmol g·h (H) with a high turnover frequency (TOF) of 10.6 min, surpassing many other state-of-the-art Co-based SACs. In situ Raman and electron paramagnetic resonance (EPR) analysis reveal OVs consumption during Co anchoring, while density functional theory (DFT) validates charge redistribution from Ti to Co, enabling efficient electron transfer and inducing strong electronic interactions that enhance CO adsorption and activation. The results highlight the interplay between atomic-scale coordination environments and macroscale architectural order in harnessing the catalytic potential of SACs and ultrathin 1D NWs.
锚定在有缺陷载体上的单原子催化剂(SAC)具有卓越的催化效率,但在稳定孤立金属原子和优化金属-载体相互作用方面面临挑战。在此,报道了一种缺陷驱动策略,用于构建一种三维树枝状SAC,其由具有丰富氧空位(OV)的交织超薄TiO纳米线(NW)组成,这些氧空位可稳定原子分散的钴(Co)位点。通过水热合成,随后进行酸蚀刻和煅烧,在氧空位处设计了Ti─Co─Ti基序。这种三维结构提供了多尺度孔隙率和电荷传输,实现了28.4 mmol g·h(CO)和13.9 mmol g·h(H)的合成气产率,具有10.6 min的高周转频率(TOF),超过了许多其他先进的钴基SAC。原位拉曼光谱和电子顺磁共振(EPR)分析揭示了钴锚定过程中氧空位的消耗,而密度泛函理论(DFT)验证了从Ti到Co的电荷重新分布,实现了有效的电子转移并诱导了强烈的电子相互作用,增强了CO的吸附和活化。结果突出了原子尺度配位环境与宏观尺度结构有序性之间的相互作用在利用SAC和超薄一维NW的催化潜力方面的作用。