Othman Mostafa, Agosta Lorenzo, Jeangros Quentin, Jaffrès Anaël, Jenatsch Sandra, Carnevali Virginia, Lempesis Nikolaos, Slama Vladislav, Steele Julian A, Zhang Rui, Solano Eduardo, Portale Guiseppe, Boureau Victor, Paracchino Adriana, Bornet Aurélien, Lai Huagui, Fu Fan, Sachan Amit Kumar, Tress Wolfgang, Artuk Kerem, Mensi Mounir D, Golobostanfard Mohammad Reza, Kuba Austin G, Zeiske Stefan, Armin Ardalan, Blondiaux Nicolas, Champault Lisa, Röthlisberger Ursula, Ruhstaller Beat, Ballif Christophe, Hessler-Wyser Aïcha, Wolff Christian M
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71b, Neuchâtel, 2000, Switzerland.
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering, Laboratory of Computational Chemistry and Biochemistry (LCBC), Lausanne, 1015, Switzerland.
Adv Mater. 2025 Jul;37(26):e2502142. doi: 10.1002/adma.202502142. Epub 2025 Apr 16.
The poor intrinsic perovskite absorber stability is arguably a central limitation challenging the prospect of commercialization for photovoltaic (PV) applications. Understanding the nanoscopic structural features that trigger instabilities in perovskite materials is essential to mitigate device degradation. Using nanostructure characterization techniques, we observe the local degradation to be initiated by material loss at stacking faults, forming inherently in the (011)-faceted perovskite domains in different formamidinium lead triiodide perovskite compositions. We introduce Ethylene Thiourea (ETU) as an additive into the perovskite precursor, which manipulates the perovskite crystal growth and results in dominantly in-and out-of-plane (001) oriented perovskite domains. Combining in-depth experimental analysis and density functional theory calculations, we find that ETU lowered the perovskite formation energy, readily enabling crystallization of the perovskite phase at room temperature without the need for an antisolvent quenching step. This facilitated the fabrication of high-quality large area 5 cm by 5 cm blade-coated perovskite films and devices. Encapsulated and unmasked ETU-treated devices, with an active area of 0.2 cm, retained > 93 % of their initial power conversion efficiency (PCE) for > 2100 hours at room temperature, and additionally, 1 cm ETU-treated devices maintained T80 (the duration for the PCE to decay to 80 % of the initial value) for > 600 hours at 65 °C, under continuous 1-sun illumination at the maximum power point in ambient conditions. Our demonstration of scalable and stable perovskite solar cells represents a promising step towards achieving a reliable perovskite PV technology.
钙钛矿本征吸收体稳定性差,可以说是阻碍光伏(PV)应用商业化前景的一个核心限制因素。了解引发钙钛矿材料不稳定性的纳米级结构特征对于减轻器件退化至关重要。通过纳米结构表征技术,我们观察到局部退化是由堆垛层错处的材料损失引发的,堆垛层错在不同甲脒铅三碘化物钙钛矿组成的(011)面钙钛矿畴中固有形成。我们将乙撑硫脲(ETU)作为添加剂引入钙钛矿前驱体中,它控制钙钛矿晶体生长,主要导致(001)面内和面外取向的钙钛矿畴。结合深入的实验分析和密度泛函理论计算,我们发现ETU降低了钙钛矿的形成能,无需反溶剂猝灭步骤就能在室温下轻松实现钙钛矿相的结晶。这有助于制造高质量的5厘米×5厘米刮涂钙钛矿薄膜和器件。封装且未掩膜的ETU处理器件,有效面积为0.2平方厘米,在室温下持续1个太阳光照最大功率点的环境条件下,2100多小时内保持其初始功率转换效率(PCE)的>93%,此外,1平方厘米的ETU处理器件在65℃下持续1个太阳光照最大功率点的环境条件下,T80(PCE衰减至初始值80%的持续时间)>600小时。我们对可扩展且稳定的钙钛矿太阳能电池的展示代表了朝着实现可靠的钙钛矿光伏技术迈出的有希望的一步。