Mancini Stefano, Garcia-Verellen Laia, Seth-Smith Helena M B, Keller Peter M, Kolesnik-Goldmann Natalia, Syed Muhammad Ali, Ullah Irfan, Hinic Vladimira, Roloff Tim, Egli Adrian, Nolte Oliver
Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.
University Hospital Basel, University of Basel, Basel, Switzerland.
Microbiol Spectr. 2025 Jun 3;13(6):e0319624. doi: 10.1128/spectrum.03196-24. Epub 2025 Apr 16.
can acquire carbapenem resistance through various mechanisms, including genomic mutations leading to the overexpression of efflux pumps, intrinsic AmpC-β-lactamase, and/or reduced permeability, and/or through the acquisition of plasmid-mediated carbapenemases and/or extended-spectrum-β-lactamases (ESBLs). Unfortunately, carbapenemase/ESBL-producing-carbapenem-resistant- (CP/ESBL-CRPA) cannot be differentiated from non-CP/ESBL-CRPA based solely on susceptibility testing results of conventional β-lactam (BL)-antibiotics. Knowing that these two groups display different activity profiles toward novel BL/β-lactamase-inhibitor (BLI) combinations, we developed and verified a cost-effective and easy-to-use diagnostic algorithm for screening and differentiation of carbapenemase and ESBL production in CRPA. We determined disc diffusion inhibition zones and gradient strip minimal inhibitory concentration values of 136 whole-genome-sequenced CRPA (70 metallo-β-lactamase-[MBL-], 1 GES-5-, 1 KPC-2-, 12 ESBL-, and 53 AmpC-hyper-producing isolates). We used the following BL-BLI combinations: ceftolozane-tazobactam (C-T), ceftazidime-avibactam, imipenem-relebactam (I-R), meropenem-vaborbactam, cefepime-enmetazobactam (C-E), and aztreonam-avibactam. We also included a lateral flow immunoassay (Carba-5, NG-Biotech) for confirmation of MBL production and double disc synergy testing (DDST) to improve ESBL detection. C-T was the most effective screening antibiotic for distinguishing MBL and ESBL producers from AmpC-hyperproducing CRPA, achieving a sensitivity of 100% for both MBL and ESBL producers. I-R reliably confirmed MBL production in C-T positive screened CRPAs, with a sensitivity of 92.8% and specificity of 100%. Incorporating Carba-5 into the phenotypic algorithm improved sensitivity for confirming MBL production to 100%. For the remaining C-T positive but I-R negative isolates, C-E showed 75% sensitivity and 78.6% specificity in detecting ESBL production. The DDST further confirmed ESBL production in six out of nine ESBL producers (66.6%). In conclusion, we established a simple and cost-effective diagnostic algorithm, enabling screening and confirmation of carbapenemase and ESBL production in CRPA.IMPORTANCECarbapenem-resistant (CRPA) is a major global health threat, and rapid identification of its resistance mechanisms is crucial for effective treatment and infection control. Differentiating between carbapenemase-producing (CP), extended-spectrum β-lactamase-producing (ESBL), and AmpC-hyperproducing CRPA is challenging, as conventional susceptibility testing cannot reliably distinguish these resistance mechanisms. Our study presents a simple, cost-effective, and easy-to-implement phenotypic diagnostic algorithm that enables accurate screening and confirmation of CP and ESBL production in CRPA. This method is particularly valuable for laboratories lacking access to molecular diagnostics, as it provides a practical alternative for routine testing. By facilitating the early detection of resistant strains, this approach has the potential to improve patient outcomes, optimize antimicrobial therapy, and enhance global surveillance efforts against multidrug-resistant pathogens.
可通过多种机制获得对碳青霉烯类的耐药性,包括导致外排泵过度表达、固有AmpC-β-内酰胺酶和/或通透性降低的基因组突变,和/或通过获得质粒介导的碳青霉烯酶和/或超广谱β-内酰胺酶(ESBLs)。不幸的是,仅根据传统β-内酰胺(BL)抗生素的药敏试验结果,无法区分产碳青霉烯酶/ESBL的耐碳青霉烯类肺炎克雷伯菌(CP/ESBL-CRPA)和非CP/ESBL-CRPA。鉴于这两组对新型BL/β-内酰胺酶抑制剂(BLI)组合表现出不同的活性谱,我们开发并验证了一种经济高效且易于使用的诊断算法,用于筛选和区分CRPA中产碳青霉烯酶和ESBL的情况。我们测定了136株全基因组测序的CRPA(70株金属β-内酰胺酶-[MBL-]、1株GES-5、1株KPC-2、12株ESBL和53株AmpC高产菌株)的纸片扩散抑菌圈和梯度条最小抑菌浓度值。我们使用了以下BL-BLI组合:头孢洛扎坦-他唑巴坦(C-T)、头孢他啶-阿维巴坦、亚胺培南-瑞来巴坦(I-R)、美罗培南-瓦博巴坦、头孢吡肟-恩美他唑巴坦(C-E)和氨曲南-阿维巴坦。我们还纳入了一种侧向流动免疫分析法(Carba-5,NG-Biotech)用于确认MBL的产生,并采用双纸片协同试验(DDST)来提高ESBL的检测率。C-T是区分MBL和ESBL产生菌与AmpC高产CRPA的最有效筛选抗生素,对MBL和ESBL产生菌的敏感性均达到100%。I-R能可靠地确认C-T阳性筛选的CRPA中MBL的产生,敏感性为92.8%,特异性为100%。将Carba-5纳入表型算法可将确认MBL产生的敏感性提高到100%。对于其余C-T阳性但I-R阴性的分离株,C-E在检测ESBL产生方面的敏感性为75%,特异性为78.6%。DDST进一步确认了9株ESBL产生菌中的6株(66.6%)产生了ESBL。总之,我们建立了一种简单且经济高效的诊断算法,能够筛选和确认CRPA中产碳青霉烯酶和ESBL的情况。
重要性
耐碳青霉烯类肺炎克雷伯菌(CRPA)是全球主要的健康威胁,快速识别其耐药机制对于有效治疗和感染控制至关重要。区分产碳青霉烯酶(CP)、产超广谱β-内酰胺酶(ESBL)和AmpC高产的CRPA具有挑战性,因为传统药敏试验无法可靠地区分这些耐药机制。我们的研究提出了一种简单、经济高效且易于实施的表型诊断算法,能够准确筛选和确认CRPA中产CP和ESBL的情况。该方法对于无法进行分子诊断的实验室尤为有价值,因为它为常规检测提供了一种实用的替代方法。通过促进耐药菌株的早期检测,这种方法有可能改善患者预后、优化抗菌治疗并加强针对多重耐药病原体的全球监测工作。