Suppr超能文献

RefConv:用于强大卷积神经网络的重新参数化重聚焦卷积

RefConv: Reparameterized Refocusing Convolution for Powerful ConvNets.

作者信息

Cai Zhicheng, Ding Xiaohan, Shen Qiu, Cao Xun

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jun;36(6):11617-11631. doi: 10.1109/TNNLS.2025.3552654.

Abstract

We propose reparameterized refocusing convolution (RefConv) as a replacement for regular convolutional layers, which is a plug-and-play module to improve the performance without any inference costs. Specifically, given a pretrained model, RefConv applies a trainable Refocusing Transformation to the basis kernels inherited from the pretrained model to establish connections among the parameters. For example, a depthwise RefConv can relate the parameters of a specific channel of convolution kernel to the parameters of the other kernel, i.e., make them refocus on the other parts of the model they have never attended to, rather than focus on the input features only. From another perspective, RefConv augments the priors of existing model structures by utilizing the representations encoded in the pretrained parameters as the priors and refocusing on them to learn novel representations, thus further enhancing the representational capacity of the pretrained model. The experimental results validated that RefConv can improve multiple convolutional neural network (CNN)-based models by a clear margin on image classification (up to 1.47% higher top-1 accuracy on ImageNet), object detection, semantic segmentation, and adversarial attacks without introducing any extra inference costs or altering the original model structure. Further studies demonstrated that RefConv can strengthen the spatial skeletons of kernels, reduce the redundancy of channels, and smooth the loss landscape, which explains its effectiveness.

摘要

我们提出重新参数化的重聚焦卷积(RefConv)来替代常规卷积层,它是一个即插即用的模块,能在不增加任何推理成本的情况下提升性能。具体而言,给定一个预训练模型,RefConv对从预训练模型继承的基础内核应用可训练的重聚焦变换,以在参数之间建立联系。例如,深度wise RefConv可以将卷积核特定通道的参数与其他内核的参数关联起来,即让它们重聚焦于模型中它们从未关注过的其他部分,而不是仅关注输入特征。从另一个角度来看,RefConv通过利用预训练参数中编码的表示作为先验,并对其进行重聚焦以学习新的表示,从而增强了现有模型结构的先验,进而进一步提高了预训练模型的表示能力。实验结果验证了RefConv可以在不引入任何额外推理成本或改变原始模型结构的情况下,显著提高多个基于卷积神经网络(CNN)的模型在图像分类(在ImageNet上top-1准确率提高高达1.47%)、目标检测、语义分割和对抗攻击方面的性能。进一步的研究表明,RefConv可以强化内核的空间骨架,减少通道冗余,并平滑损失曲面,这解释了它的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验