Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena Campus, Cesena, Italy.
Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena Campus, Cesena, Italy.
Neural Netw. 2020 Sep;129:55-74. doi: 10.1016/j.neunet.2020.05.032. Epub 2020 May 29.
Convolutional neural networks (CNNs) are emerging as powerful tools for EEG decoding: these techniques, by automatically learning relevant features for class discrimination, improve EEG decoding performances without relying on handcrafted features. Nevertheless, the learned features are difficult to interpret and most of the existing CNNs introduce many trainable parameters. Here, we propose a lightweight and interpretable shallow CNN (Sinc-ShallowNet), by stacking a temporal sinc-convolutional layer (designed to learn band-pass filters, each having only the two cut-off frequencies as trainable parameters), a spatial depthwise convolutional layer (reducing channel connectivity and learning spatial filters tied to each band-pass filter), and a fully-connected layer finalizing the classification. This convolutional module limits the number of trainable parameters and allows direct interpretation of the learned spectral-spatial features via simple kernel visualizations. Furthermore, we designed a post-hoc gradient-based technique to enhance interpretation by identifying the more relevant and more class-specific features. Sinc-ShallowNet was evaluated on benchmark motor-execution and motor-imagery datasets and against different design choices and training strategies. Results show that (i) Sinc-ShallowNet outperformed a traditional machine learning algorithm and other CNNs for EEG decoding; (ii) The learned spectral-spatial features matched well-known EEG motor-related activity; (iii) The proposed architecture performed better with a larger number of temporal kernels still maintaining a good compromise between accuracy and parsimony, and with a trialwise rather than a cropped training strategy. In perspective, the proposed approach, with its interpretative capacity, can be exploited to investigate cognitive/motor aspects whose EEG correlates are yet scarcely known, potentially characterizing their relevant features.
卷积神经网络 (CNNs) 正在成为 EEG 解码的强大工具:这些技术通过自动学习用于分类的相关特征,在不依赖手工制作特征的情况下提高 EEG 解码性能。然而,所学习的特征难以解释,并且大多数现有的 CNN 引入了许多可训练参数。在这里,我们提出了一种轻量级和可解释的浅层 CNN(Sinc-ShallowNet),通过堆叠一个时间 sinc 卷积层(旨在学习带通滤波器,每个滤波器只有两个截止频率作为可训练参数)、一个空间深度卷积层(减少通道连接并学习与每个带通滤波器相关的空间滤波器)和一个全连接层来完成分类。这个卷积模块限制了可训练参数的数量,并通过简单的核可视化允许直接解释所学习的频谱-空间特征。此外,我们设计了一种事后基于梯度的技术,通过识别更相关和更特定于类的特征来增强解释。Sinc-ShallowNet 在基准运动执行和运动想象数据集上进行了评估,并与不同的设计选择和训练策略进行了比较。结果表明:(i)Sinc-ShallowNet 在 EEG 解码方面优于传统机器学习算法和其他 CNN;(ii)所学习的频谱-空间特征与众所周知的 EEG 运动相关活动匹配良好;(iii)所提出的架构在使用更多时间内核时表现更好,仍然在准确性和简约性之间保持良好的折衷,并且使用逐例而不是裁剪的训练策略。展望未来,所提出的方法具有解释能力,可以用于研究认知/运动方面的问题,这些方面的 EEG 相关性尚不清楚,有可能描述其相关特征。