Suppr超能文献

一种考虑高阶交互的在线社交网络意见演化模型。

An opinion evolution model for online social networks considering higher-order interactions.

作者信息

Liu Quan, Yao Yuekang, Jia Meimei, Li Huizong, Pan Qiru

机构信息

School of Artificial Intelligence and Software Engineering, Nanyang Normal University, Nanyang, China.

Henan Provincial Engineering Research Center for Image Big Data Intelligent Processing, Nanyang, China.

出版信息

PLoS One. 2025 Apr 16;20(4):e0321718. doi: 10.1371/journal.pone.0321718. eCollection 2025.

Abstract

As the number of users in online social networks increases, the diffusion of information and users' opinions on events become more complex, making it difficult for traditional complex networks to accurately capture their characteristics and patterns. To address this, this paper proposes an online social network opinion evolution model that accounts for higher-order interactions. The model incorporates the higher-order effects of group interactions and introduces the acceptance, non-commitment, and rejection dimensions from social judgment theory. Different approaches, such as acceptance, neutrality, and contrastive rejection, are adopted when individuals exchange opinions with their neighbors. Through numerical simulations, it is shown that higher-order interactions significantly enhance the speed and coverage of information propagation. When the interaction dimensions are appropriate, increasing the average size of hyperedges significantly contributes to the formation of consensus. In contrast, simply increasing the number of hyperedges that nodes are involved in has a limited impact on consensus formation. This work provides a theoretical and model-based foundation for better understanding the dynamics of opinion evolution in social networks.

摘要

随着在线社交网络中用户数量的增加,信息的传播以及用户对事件的看法变得更加复杂,使得传统复杂网络难以准确捕捉其特征和模式。为了解决这一问题,本文提出了一种考虑高阶交互作用的在线社交网络意见演化模型。该模型纳入了群体交互的高阶效应,并引入了社会判断理论中的接受、不表态和拒绝维度。当个体与邻居交换意见时,采用了不同的方式,如接受、中立和对比拒绝。通过数值模拟表明,高阶交互作用显著提高了信息传播的速度和覆盖范围。当交互维度适当时,增加超边的平均大小对达成共识有显著贡献。相比之下,单纯增加节点所涉及的超边数量对共识形成的影响有限。这项工作为更好地理解社交网络中意见演化的动态过程提供了基于理论和模型的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/811d/12002442/f3869be5d958/pone.0321718.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验