School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Chaos. 2022 Aug;32(8):083131. doi: 10.1063/5.0093776.
We consider stochastic, individual-level susceptible-infected-susceptible models for the spread of disease, opinion, or information on dynamic graphs and hypergraphs. We set up "snapshot" models where the interactions at any time are independently and identically sampled from an underlying distribution that represents a typical scenario. In the hypergraph case, this corresponds to a new Gilbert-style random hypergraph model. After justifying this modeling regime, we present useful mean field approximations. With an emphasis on the derivation of spectral conditions that determine long-time extinction, we give computational simulations and accompanying theoretical analysis for the exact models and their mean field approximations.
我们考虑了疾病、观点或信息在动态图和超图上传播的随机个体水平易感感染易感染模型。我们建立了“快照”模型,其中任何时候的相互作用都是从表示典型场景的基础分布中独立且同分布地抽样得到的。在超图的情况下,这对应于一种新的 Gilbert 风格的随机超图模型。在证明了这种建模模式之后,我们提出了有用的平均场近似。我们强调了确定长时间灭绝的谱条件的推导,并对精确模型及其平均场近似进行了计算模拟和相应的理论分析。