Suppr超能文献

动态图和超图上易感-感染-易感模型的疾病灭绝。

Disease extinction for susceptible-infected-susceptible models on dynamic graphs and hypergraphs.

机构信息

School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

出版信息

Chaos. 2022 Aug;32(8):083131. doi: 10.1063/5.0093776.

Abstract

We consider stochastic, individual-level susceptible-infected-susceptible models for the spread of disease, opinion, or information on dynamic graphs and hypergraphs. We set up "snapshot" models where the interactions at any time are independently and identically sampled from an underlying distribution that represents a typical scenario. In the hypergraph case, this corresponds to a new Gilbert-style random hypergraph model. After justifying this modeling regime, we present useful mean field approximations. With an emphasis on the derivation of spectral conditions that determine long-time extinction, we give computational simulations and accompanying theoretical analysis for the exact models and their mean field approximations.

摘要

我们考虑了疾病、观点或信息在动态图和超图上传播的随机个体水平易感感染易感染模型。我们建立了“快照”模型,其中任何时候的相互作用都是从表示典型场景的基础分布中独立且同分布地抽样得到的。在超图的情况下,这对应于一种新的 Gilbert 风格的随机超图模型。在证明了这种建模模式之后,我们提出了有用的平均场近似。我们强调了确定长时间灭绝的谱条件的推导,并对精确模型及其平均场近似进行了计算模拟和相应的理论分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验