Vásquez Diego, Medina Luis, Martínez Gabriela
1Escuela de Ingeniería Civil Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Chile.
2Instituto de Ingeniería Mecánica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Chile.
Acta Bioeng Biomech. 2025 Jun 16;27(1):69-81. doi: 10.37190/abb-02572-2024-03. Print 2025 Mar 1.
: The design of three-dimensional scaffolds for bone regeneration poses challenges in balancing mechanical strength, porosity and degradability. This study aimed to optimize the geometric parameters of polylactic acid (PLA) scaffolds fabricated via 3D printing, focusing on pore size, porosity, and geometric configurations to enhance mechanical performance and biological functionality. : Two geometric configurations - orthogonal and offset orthogonal - were evaluated with pore sizes ranging from 400-1000 µm and porosities between 55-70%. Finite element analysis (FEA) in ANSYS Workbench was used to simulate mechanical behavior, while the Taguchi experimental design determined the optimal parameter combinations. Statistical analyses, including ANOVA, assessed the significance of each factor. : The study identified a pore size of 400 µm as optimal for structural strength, while a porosity of 70% provided a balance between stability and cell growth. Orthogonal geometries distributed stress more uniformly, reducing critical stress concentrations compared to offset configurations. ANOVA revealed that pore size was the most significant factor, followed by porosity and geometry, achieving a model reliability of = 98.42%. : The findings highlight the importance of geometric optimization for improving scaffold mechanical properties while maintaining biological functionality. This study offers a robust framework for designing patient-specific scaffolds tailored to bone tissue engineering applications.
用于骨再生的三维支架设计在平衡机械强度、孔隙率和可降解性方面面临挑战。本研究旨在优化通过3D打印制造的聚乳酸(PLA)支架的几何参数,重点关注孔径、孔隙率和几何构型,以提高机械性能和生物学功能。
评估了两种几何构型——正交和偏置正交,孔径范围为400 - 1000 µm,孔隙率在55 - 70%之间。使用ANSYS Workbench中的有限元分析(FEA)来模拟机械行为,而田口实验设计确定了最佳参数组合。包括方差分析(ANOVA)在内的统计分析评估了每个因素的显著性。
该研究确定400 µm的孔径对结构强度最佳,而70%的孔隙率在稳定性和细胞生长之间提供了平衡。与偏置构型相比,正交几何构型能更均匀地分布应力,降低临界应力集中。方差分析表明孔径是最显著的因素,其次是孔隙率和几何构型,模型可靠性达到了98.42%。
研究结果突出了几何优化在提高支架机械性能同时保持生物学功能方面的重要性。本研究为设计适用于骨组织工程应用的个性化支架提供了一个强大的框架。