Suppr超能文献

双相情感障碍的声学和自然语言标记:一项移动健康横断面试点研究。

Acoustic and Natural Language Markers for Bipolar Disorder: A Pilot, mHealth Cross-Sectional Study.

作者信息

Crocamo Cristina, Cioni Riccardo Matteo, Canestro Aurelia, Nasti Christian, Palpella Dario, Piacenti Susanna, Bartoccetti Alessandra, Re Martina, Simonetti Valentina, Barattieri di San Pietro Chiara, Bulgheroni Maria, Bartoli Francesco, Carrà Giuseppe

机构信息

School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, 20900, Italy, 39 0264488483.

Ab.Acus, Milan, Italy.

出版信息

JMIR Form Res. 2025 Apr 16;9:e65555. doi: 10.2196/65555.

Abstract

BACKGROUND

Monitoring symptoms of bipolar disorder (BD) is a challenge faced by mental health services. Speech patterns are crucial in assessing the current experiences, emotions, and thought patterns of people with BD. Natural language processing (NLP) and acoustic signal processing may support ongoing BD assessment within a mobile health (mHealth) framework.

OBJECTIVE

Using both acoustic and NLP-based features from the speech of people with BD, we built an app-based tool and tested its feasibility and performance to remotely assess the individual clinical status.

METHODS

We carried out a pilot, observational study, sampling adults diagnosed with BD from the caseload of the Nord Milano Mental Health Trust (Italy) to explore the relationship between selected speech features and symptom severity and to test their potential to remotely assess mental health status. Symptom severity assessment was based on clinician ratings, using the Young Mania Rating Scale (YMRS) and Montgomery-Åsberg Depression Rating Scale (MADRS) for manic and depressive symptoms, respectively. Leveraging a digital health tool embedded in a mobile app, which records and processes speech, participants self-administered verbal performance tasks. Both NLP-based and acoustic features were extracted, testing associations with mood states and exploiting machine learning approaches based on random forest models.

RESULTS

We included 32 subjects (mean [SD] age 49.6 [14.3] years; 50% [16/32] females) with a MADRS median (IQR) score of 13 (21) and a YMRS median (IQR) score of 5 (16). Participants freely managed the digital environment of the app, without perceiving it as intrusive and reporting an acceptable system usability level (average score 73.5, SD 19.7). Small-to-moderate correlations between speech features and symptom severity were uncovered, with sex-based differences in predictive capability. Higher latency time (ρ=0.152), increased silences (ρ=0.416), and vocal perturbations correlated with depressive symptomatology. Pressure of speech based on the mean intraword time (ρ=-0.343) and lower voice instability based on jitter-related parameters (ρ ranging from -0.19 to -0.27) were detected for manic symptoms. However, a higher contribution of NLP-based and conversational features, rather than acoustic features, was uncovered, especially for predictive models for depressive symptom severity (NLP-based: R2=0.25, mean squared error [MSE]=110.07, mean absolute error [MAE]=8.17; acoustics: R2=0.11, MSE=133.75, MAE=8.86; combined: R2=0.16; MSE=118.53, MAE=8.68).

CONCLUSIONS

Remotely collected speech patterns, including both linguistic and acoustic features, are associated with symptom severity levels and may help differentiate clinical conditions in individuals with BD during their mood state assessments. In the future, multimodal, smartphone-integrated digital ecological momentary assessments could serve as a powerful tool for clinical purposes, remotely complementing standard, in-person mental health evaluations.

摘要

背景

监测双相情感障碍(BD)的症状是心理健康服务面临的一项挑战。言语模式对于评估双相情感障碍患者当前的经历、情绪和思维模式至关重要。自然语言处理(NLP)和声学信号处理可能有助于在移动健康(mHealth)框架内对双相情感障碍进行持续评估。

目的

利用双相情感障碍患者言语中的声学和基于NLP的特征,我们构建了一个基于应用程序的工具,并测试了其远程评估个体临床状态的可行性和性能。

方法

我们开展了一项试点观察性研究,从意大利米兰北部心理健康信托机构的病例中抽取被诊断为双相情感障碍的成年人,以探索所选言语特征与症状严重程度之间的关系,并测试其远程评估心理健康状态的潜力。症状严重程度评估基于临床医生的评分,分别使用青年躁狂评定量表(YMRS)和蒙哥马利-Åsberg抑郁评定量表(MADRS)评估躁狂和抑郁症状。利用嵌入移动应用程序中的数字健康工具记录和处理言语,参与者自行完成言语表现任务。提取基于NLP和声学的特征,测试与情绪状态的关联,并利用基于随机森林模型的机器学习方法。

结果

我们纳入了32名受试者(平均[标准差]年龄49.6[14.3]岁;50%[16/32]为女性),MADRS中位数(IQR)评分为13(21),YMRS中位数(IQR)评分为5(16)。参与者能够自由管理应用程序的数字环境,并未感觉到它具有侵扰性,且报告系统可用性水平可接受(平均得分73.5,标准差19.7)。发现言语特征与症状严重程度之间存在小到中等程度的相关性,且预测能力存在性别差异。较长的延迟时间(ρ=0.152)、更多的沉默(ρ=0.416)以及声音扰动与抑郁症状相关。基于平均词内时间的言语压力(ρ=-0.343)和基于抖动相关参数的较低声音不稳定性(ρ范围为-0.19至-0.27)与躁狂症状相关。然而,发现基于NLP和对话的特征比声学特征的贡献更大,尤其是对于抑郁症状严重程度的预测模型(基于NLP:R2=0.25,均方误差[MSE]=110.07,平均绝对误差[MAE]=8.17;声学:R2=0.11,MSE=133.75,MAE=8.86;综合:R2=0.16;MSE=118.53,MAE=8.68)。

结论

远程收集的言语模式,包括语言和声学特征,与症状严重程度水平相关,并且在双相情感障碍患者的情绪状态评估期间可能有助于区分临床状况。未来,多模式、集成智能手机的数字生态瞬时评估可作为一种强大的临床工具,远程补充标准的面对面心理健康评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c58/12017610/995624897cdc/formative-v9-e65555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验