Suppr超能文献

种子与土壤启发的水凝胶微球:一种用于逆转椎间盘退变的双作用抗氧化和细胞疗法。

Seeds-and-soil inspired hydrogel microspheres: A dual-action antioxidant and cellular therapy for reversing intervertebral disc degeneration.

作者信息

Yang Yilin, Guo Jiangbo, Cao Haifei, Tian Xin, Shen Hao, Niu Junjie, Yang Huilin, Shi Qin, Xu Yong

机构信息

Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, China.

Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China.

出版信息

Biomaterials. 2025 Oct;321:123326. doi: 10.1016/j.biomaterials.2025.123326. Epub 2025 Apr 9.

Abstract

Intervertebral disc degeneration (IVDD) is a globally prevalent disease, yet achieving dual repair of tissue and function presents significant challenges. Considering reactive oxygen species (ROS) is a primary cause of IVDD, and given the decrease of nucleus pulposus cells (NPCs) and extensive degradation of extracellular matrix (ECM) during IVDD development, the present study, inspired by the "seeds-and-soil" strategy, has developed NPCs-loaded TBA@Gel&Chs hydrogel microspheres. These microspheres serve as exogenous supplements of NPCs and ECM analogs, replenishing "seeds" and "soil" for nucleus pulposus repair, and incorporating polyphenol antioxidant components to interrupt the oxidative stress-IVDD cycle, thereby constructing a microsphere system where NPCs and ECM support each other. Experiments proved that TBA@Gel&Chs exhibited significant extracellular ROS-scavenging antioxidant capabilities while effectively upregulating intracellular antioxidant proteins expression (Sirt3 and Sod2). This dual-action antioxidant capability effectively protects the vitality and physiological functions of NPCs. The therapeutic effects of microspheres on IVDD were also confirmed in rat models, which was found significantly restore histological structure and mechanical properties of degenerated discs. Additionally, RNA-seq results have provided evidences of antioxidant mechanism by which TBA@Gel&Chs protected NPCs from oxidative stress. Therefore, the NPCs-loaded TBA@Gel&Chs microspheres developed in this study have achieved excellent therapeutic effects, offering a paradigm using antioxidant biomaterials combined with cellular therapy for IVDD treatment.

摘要

椎间盘退变(IVDD)是一种全球普遍存在的疾病,然而实现组织和功能的双重修复面临重大挑战。考虑到活性氧(ROS)是IVDD的主要病因,并且鉴于在IVDD发展过程中髓核细胞(NPCs)减少和细胞外基质(ECM)广泛降解,本研究受“种子与土壤”策略启发,制备了负载NPCs的TBA@Gel&Chs水凝胶微球。这些微球作为NPCs和ECM类似物的外源性补充剂,为髓核修复补充“种子”和“土壤”,并纳入多酚抗氧化成分以中断氧化应激-IVDD循环,从而构建一个NPCs和ECM相互支持的微球系统。实验证明,TBA@Gel&Chs表现出显著的细胞外ROS清除抗氧化能力,同时有效上调细胞内抗氧化蛋白表达(Sirt3和Sod2)。这种双重作用的抗氧化能力有效地保护了NPCs的活力和生理功能。微球对IVDD的治疗效果在大鼠模型中也得到证实,发现其能显著恢复退变椎间盘的组织结构和力学性能。此外,RNA测序结果提供了TBA@Gel&Chs保护NPCs免受氧化应激的抗氧化机制的证据。因此,本研究制备的负载NPCs的TBA@Gel&Chs微球取得了优异的治疗效果,为使用抗氧化生物材料结合细胞疗法治疗IVDD提供了一种范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验