Suppr超能文献

DNA结合和有丝分裂磷酸化可保护多聚谷氨酰胺蛋白不形成聚集体。

DNA binding and mitotic phosphorylation protect polyglutamine proteins from assembly formation.

作者信息

Saad Shady, Swigut Tomek, Tabatabaee Saman, Lalgudi Pranav, Jarosz Daniel F, Wysocka Joanna

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cell. 2025 May 29;188(11):2974-2991.e20. doi: 10.1016/j.cell.2025.03.031. Epub 2025 Apr 15.

Abstract

Polyglutamine (polyQ) expansion is associated with pathogenic protein aggregation in neurodegenerative disorders. However, long polyQ tracts are also found in many transcription factors (TFs), such as FOXP2, a TF implicated in human speech. Here, we explore how FOXP2 and other glutamine-rich TFs avoid unscheduled assembly. Throughout interphase, DNA binding, irrespective of sequence specificity, has a solubilizing effect. During mitosis, multiple phosphorylation events promote FOXP2's eviction from chromatin and supplant the solubilizing function of DNA. Further, human-specific amino acid substitutions linked to the evolution of speech map to a mitotic phospho-patch, the "EVO patch," and reduce the propensity of the human FOXP2 to assemble. Fusing the pathogenic form of Huntingtin to either a DNA-binding domain, a phosphomimetic variant of this EVO patch, or a negatively charged peptide is sufficient to diminish assembly formation, suggesting that hijacking mechanisms governing solubility of glutamine-rich TFs may offer new strategies for treatment of polyQ expansion diseases.

摘要

聚谷氨酰胺(polyQ)扩展与神经退行性疾病中的致病性蛋白质聚集有关。然而,在许多转录因子(TFs)中也发现了长聚谷氨酰胺序列,例如与人类语言相关的转录因子FOXP2。在这里,我们探讨FOXP2和其他富含谷氨酰胺的转录因子如何避免意外组装。在整个间期,DNA结合,无论序列特异性如何,都具有溶解作用。在有丝分裂期间,多个磷酸化事件促进FOXP2从染色质上解离,并取代DNA的溶解功能。此外,与语言进化相关的人类特异性氨基酸取代映射到一个有丝分裂磷酸化区域,即“EVO区域”,并降低了人类FOXP2组装的倾向。将亨廷顿蛋白的致病形式与DNA结合结构域、该EVO区域的磷酸模拟变体或带负电荷的肽融合足以减少聚集体的形成,这表明劫持控制富含谷氨酰胺转录因子溶解性的机制可能为治疗聚谷氨酰胺扩展疾病提供新策略。

相似文献

本文引用的文献

4
Commonly asked questions about transcriptional activation domains.转录激活结构域常见问题解答。
Curr Opin Struct Biol. 2024 Feb;84:102732. doi: 10.1016/j.sbi.2023.102732. Epub 2023 Dec 5.
5
Molecular features driving cellular complexity of human brain evolution.驱动人类大脑进化细胞复杂性的分子特征。
Nature. 2023 Aug;620(7972):145-153. doi: 10.1038/s41586-023-06338-4. Epub 2023 Jul 19.
7
Deciphering the multi-scale, quantitative cis-regulatory code.解析多尺度、定量的顺式调控代码。
Mol Cell. 2023 Feb 2;83(3):373-392. doi: 10.1016/j.molcel.2022.12.032. Epub 2023 Jan 23.
9
Filter trapping protocol to detect aggregated proteins in human cell lines.过滤捕获法检测人细胞系中的聚集蛋白。
STAR Protoc. 2022 Jul 19;3(3):101571. doi: 10.1016/j.xpro.2022.101571. eCollection 2022 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验