Wang Yajie, Tang Bin, Zhou Menghan, Li Bohui, Lu Xujie, Geng Huaman, Li Dan, Hua Yujie, Zhou Guangdong, Wang Di
Plastic Surgery Institute, Shandong Provincial Key Laboratory for Tissue Regeneration and Repair & Reconstruction (Under Preparation), Shandong Second Medical University, Weifang, Shandong 261053, PR China.
International Medical Department, China-Japan Friendship Hospital, Beijing 100029, P. R. China.
ACS Nano. 2025 Apr 29;19(16):15474-15490. doi: 10.1021/acsnano.4c16158. Epub 2025 Apr 16.
Cartilage tissue engineering has made significant strides in clinical regenerative treatment. The success of cartilage regeneration critically depends on a favorable regenerative microenvironment by means of ideal bioactive scaffolds. However, total meniscus replacement frequently entails a harsh microenvironment of accompanying chronic inflammation and oxidative stress conditions after a massive injury, which extremely hinders tissue regenerative repair. Herein, a "core-shell" codelivery nanocarrier is developed to synergistically regulate the cartilaginous immune microenvironment (CIME) for total meniscus replacement. In this study, mesoporous silica nanoparticles are used to encapsulate an antioxidant and anti-inflammatory drug, Emodin, in the core and meanwhile modify a growth differentiation factor (GDF) by reversible disulfide bonds on the shell, together constructing a codelivery nanocarrier system (). The synergistic dual-drug release effectively reverses inflammation and oxidative microenvironment and is followed by successful promotion of fibrocartilage regeneration . Subsequently, -loaded cartilage-specific matrix hydrogels are combined with a meniscus-shaped polycaprolactone framework to construct a mechanically reinforced living meniscus substitute. As a result, rabbit experiments demonstrate that the codelivery nanocarrier system synergistically regulates the cartilaginous immune microenvironment, thereby achieving successful total meniscus replacement and fibrocartilage regeneration. The current study, therefore, offers a regenerative nanotreatment strategy to reverse the harsh microenvironment for total meniscus replacement.
软骨组织工程在临床再生治疗方面取得了重大进展。软骨再生的成功关键取决于通过理想的生物活性支架营造有利的再生微环境。然而,在大面积损伤后,全半月板置换常常伴随着慢性炎症和氧化应激条件的恶劣微环境,这极大地阻碍了组织再生修复。在此,开发了一种“核壳”共递送纳米载体,用于协同调节全半月板置换的软骨免疫微环境(CIME)。在本研究中,介孔二氧化硅纳米颗粒用于在核心中封装抗氧化和抗炎药物大黄素,同时通过壳上的可逆二硫键修饰生长分化因子(GDF),共同构建一个共递送纳米载体系统()。协同双药释放有效逆转炎症和氧化微环境,随后成功促进纤维软骨再生。随后,将负载的软骨特异性基质水凝胶与半月板形状的聚己内酯框架相结合,构建机械增强的活性半月板替代物。结果,兔子实验表明,共递送纳米载体系统协同调节软骨免疫微环境,从而实现全半月板置换和纤维软骨再生的成功。因此,当前的研究提供了一种再生纳米治疗策略,以逆转全半月板置换的恶劣微环境。