Gou Jingren, Cui Kaixuan, Wang Suqing, Zhang Zheng, Huang Jiale, Wang Haihui
State Key Laboratory of Chemical Engineering and Low-carbon Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
Nat Commun. 2025 Apr 16;16(1):3626. doi: 10.1038/s41467-025-58916-x.
Developing versatile solid polymer electrolytes is a reasonable approach to achieving reliable lithium metal batteries but is still challenging due to the nonuniform lithium deposition associated with the sluggish Li kinetics and insufficient mechanical strength. Herein, the concept of developing anisotropic solid polymer electrolyte is realized via integrating polymer hosts with highly oriented polyacrylonitrile nanofibers modified by LiLaZrTaO particles. The oriented composite structure is employed to homogenize Li flux, serving as a physical barrier to resist lithium dendrites, retarding the side reaction between the electrolyte and lithium, thus endowing a compatible interface for lithium negative electrode. Correspondingly, the Li | |LiFePO cells steadily operate over 1000 cycles, delivering durable capacity retention of 91% at 170 mA g. Furthermore, numerical modeling and density functional theory are combined to clarify the multiphysics interplay between the designed solid polymer electrolyte and lithium negative electrode. This work provides a perspective for constructing interface-friendly solid polymer electrolytes at an electrochemo-mechanical level.
开发多功能固体聚合物电解质是实现可靠锂金属电池的合理途径,但由于与迟缓的锂动力学和不足的机械强度相关的锂沉积不均匀,这仍然具有挑战性。在此,通过将聚合物主体与由LiLaZrTaO颗粒改性的高度取向聚丙烯腈纳米纤维相结合,实现了开发各向异性固体聚合物电解质的概念。采用取向复合结构使锂通量均匀化,作为抵抗锂枝晶的物理屏障,减缓电解质与锂之间的副反应,从而赋予锂负极一个相容的界面。相应地,Li||LiFePO电池在1000次循环中稳定运行,在170 mA g下具有91%的持久容量保持率。此外,结合数值模拟和密度泛函理论来阐明设计的固体聚合物电解质与锂负极之间的多物理相互作用。这项工作为在电化学机械水平上构建界面友好的固体聚合物电解质提供了一个视角。