Suppr超能文献

一种超高模量凝胶电解质重塑锂枝晶生长模式以实现界面稳定的锂金属电池

An Ultrahigh Modulus Gel Electrolytes Reforming the Growing Pattern of Li Dendrites for Interfacially Stable Lithium-Metal Batteries.

作者信息

Gou Jingren, Zhang Zheng, Wang Suqing, Huang Jiale, Cui Kaixuan, Wang Haihui

机构信息

Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China.

出版信息

Adv Mater. 2024 Feb;36(7):e2309677. doi: 10.1002/adma.202309677. Epub 2023 Dec 7.

Abstract

Gel polymer electrolytes (GPEs) have aroused intensive attention for their moderate comprehensive performances in lithium-metal batteries (LMBs). However, GPEs with low elastic moduli of MPa magnitude cannot mechanically regulate the Li deposition, leading to recalcitrant lithium dendrites. Herein, a porous Li La Zr O (LLZO) framework (PLF) is employed as an integrated solid filler to address the intrinsic drawback of GPEs. With the incorporation of PLF, the composite GPE exhibits an ultrahigh elastic modulus of GPa magnitude, confronting Li dendrites at a mechanical level and realizing steady polarization at high current densities in Li||Li cells. Benefiting from the compatible interface with anodes, the LFP|PLF@GPE|Li cells deliver excellent rate capability and cycling performance at room temperature. Theoretical models extracted from the topology of solid fillers reveal that the PLF with unique 3D structures can effectively reinforce the gel phase of GPEs at the nanoscale via providing sufficient mechanical support from the load-sensitive direction. Numerical models are further developed to reproduce the multiphysical procedure of dendrite propagation and give insights into predicting the failure modes of LMBs. This work quantitatively clarifies the relationship between the topology of solid fillers and the interface stability of GPEs, providing guidelines for designing mechanically reliable GPEs for LMBs.

摘要

凝胶聚合物电解质(GPEs)因其在锂金属电池(LMBs)中适度的综合性能而引起了广泛关注。然而,弹性模量低至兆帕量级的GPEs无法在机械上调节锂的沉积,从而导致顽固的锂枝晶。在此,采用多孔锂镧锆氧化物(LLZO)骨架(PLF)作为整体固体填料,以解决GPEs的固有缺点。通过加入PLF,复合GPE表现出吉帕量级的超高弹性模量,在机械层面上对抗锂枝晶,并在Li||Li电池中实现高电流密度下的稳定极化。受益于与阳极的兼容界面,LFP|PLF@GPE|Li电池在室温下具有出色的倍率性能和循环性能。从固体填料拓扑结构中提取的理论模型表明,具有独特三维结构的PLF可以通过从负载敏感方向提供足够的机械支撑,在纳米尺度上有效地增强GPEs的凝胶相。进一步开发了数值模型,以重现枝晶生长的多物理过程,并深入了解LMBs的失效模式预测。这项工作定量地阐明了固体填料拓扑结构与GPEs界面稳定性之间的关系,为设计用于LMBs的机械可靠GPEs提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验