Suppr超能文献

筛选出了一株耐胁迫的红球菌属菌株Rhodococcus sp. WH103,并将其共固定化以更高效地降解吩嗪-1-羧酸。

A stress-tolerant strain Rhodococcus sp. WH103 was isolated and co-immobilized to more efficiently degrade phenazine-1-carboxylic acid.

作者信息

Wang Hui, Wang Xiang, Zu Yao, Zhao Wenrui, Zhao Kuan, Hou Jingyun, Ni Yujie, Zhu Hongkang, Hu Shubao

机构信息

The Province Key Laboratory of the Aqueous Environment Protection and Pollution Control of Yangtze River, Anhui, College of Resources and Environment, Anqing Normal University, Anqing, 246003, China.

College of Resources and Environment, Anhui Science and Technology University, Chuzhou, 233100, China.

出版信息

Sci Rep. 2025 Apr 16;15(1):13073. doi: 10.1038/s41598-025-96572-9.

Abstract

Phenazine-1-carboxylic acid (PCA), the main active ingredient of the bio-fungicide shenqinmycin, has been widely used in agriculture due to its excellent antimicrobial properties. However, it poses risks to non-target microorganisms and causes phytotoxicity, necessitating efficient degradation strategies. In this study, six PCA-degrading bacterial strains were isolated from the rice rhizosphere by enrichment culture. Subsequently, Rhodococcus sp. WH103, which showed the highest efficiency in degrading PCA as well as tolerance to high temperature (42 °C) and osmotic stress (addition of 0.7 M NaCl) was subjected to further study. Additionally, the co-immobilization of strain WH103 cells with sodium alginate (SA) and biochar was explored. The SA-biochar-bacterial beads successfully degraded PCA to below 0.001 mM under optimized conditions within 21 h and exhibited reusability for up to 12 cycles. Notably, the SA-biochar-bacterial beads significantly alleviated the phytotoxicity of PCA during seed germination. This study provides an excellent strain resource and method reference for PCA degradation, lays the foundation for the practical application of pollutant-degrading microorganisms in environmental remediation.

摘要

吩嗪 - 1 - 羧酸(PCA)是生物杀菌剂申嗪霉素的主要活性成分,因其优异的抗菌性能而在农业中广泛应用。然而,它对非靶标微生物构成风险并导致植物毒性,因此需要有效的降解策略。在本研究中,通过富集培养从水稻根际分离出六株PCA降解细菌菌株。随后,对在PCA降解效率最高以及对高温(42℃)和渗透胁迫(添加0.7 M NaCl)具有耐受性的红球菌属菌株WH103进行了进一步研究。此外,还探索了将菌株WH103细胞与海藻酸钠(SA)和生物炭共固定化。在优化条件下,SA - 生物炭 - 细菌珠在21小时内成功将PCA降解至低于0.001 mM,并表现出高达12个循环的可重复使用性。值得注意的是,SA - 生物炭 - 细菌珠在种子萌发期间显著减轻了PCA的植物毒性。本研究为PCA降解提供了优良的菌株资源和方法参考,为污染物降解微生物在环境修复中的实际应用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9118/12003661/34912b7f9828/41598_2025_96572_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验