Suppr超能文献

微生物对温度和硫酸盐沉积的敏感性调节了泥炭土的温室气体排放。

Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils.

作者信息

AminiTabrizi Roya, Graf-Grachet Nathalia, Chu Rosalie K, Toyoda Jason G, Hoyt David W, Hamdan Rasha, Wilson Rachel M, Tfaily Malak M

机构信息

Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA.

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.

出版信息

Glob Chang Biol. 2023 Apr;29(7):1951-1970. doi: 10.1111/gcb.16614. Epub 2023 Feb 5.

Abstract

Peatlands are among the largest natural sources of atmospheric methane (CH ) worldwide. Microbial processes play a key role in regulating CH emissions from peatland ecosystems, yet the complex interplay between soil substrates and microbial communities in controlling CH emissions as a function of global change remains unclear. Herein, we performed an integrated analysis of multi-omics data sets to provide a comprehensive understanding of the molecular processes driving changes in greenhouse gas (GHG) emissions in peatland ecosystems with increasing temperature and sulfate deposition in a laboratory incubation study. We sought to first investigate how increasing temperatures (4, 21, and 35°C) impact soil microbiome-metabolome interactions; then explore the competition between methanogens and sulfate-reducing bacteria (SRBs) with increasing sulfate concentrations at the optimum temperature for methanogenesis. Our results revealed that peat soil organic matter degradation, mediated by biotic and potentially abiotic processes, is the main driver of the increase in CO production with temperature. In contrast, the decrease in CH production at 35°C was linked to the absence of syntrophic communities and the potential inhibitory effect of phenols on methanogens. Elevated temperatures further induced the microbial communities to develop high growth yield and stress tolerator trait-based strategies leading to a shift in their composition and function. On the other hand, SRBs were able to outcompete methanogens in the presence of non-limiting sulfate concentrations at 21°C, thereby reducing CH emissions. At higher sulfate concentrations, however, the prevalence of communities capable of producing sufficient low-molecular-weight carbon substrates for the coexistence of SRBs and methanogens was translated into elevated CH emissions. The use of omics in this study enhanced our understanding of the structure and interactions among microbes with the abiotic components of the system that can be useful for mitigating GHG emissions from peatland ecosystems in the face of global change.

摘要

泥炭地是全球大气甲烷(CH₄)的最大天然来源之一。微生物过程在调节泥炭地生态系统的CH₄排放中起着关键作用,然而,在全球变化的背景下,土壤底物与微生物群落之间在控制CH₄排放方面的复杂相互作用仍不清楚。在此,我们进行了多组学数据集的综合分析,以便在一项实验室培养研究中,随着温度和硫酸盐沉积增加,全面了解驱动泥炭地生态系统温室气体(GHG)排放变化的分子过程。我们首先试图研究温度升高(4、21和35°C)如何影响土壤微生物组-代谢组相互作用;然后在甲烷生成的最佳温度下,探索随着硫酸盐浓度增加,产甲烷菌与硫酸盐还原细菌(SRB)之间的竞争。我们的结果表明,由生物和潜在的非生物过程介导的泥炭土壤有机质降解是CO₂产量随温度增加的主要驱动因素。相比之下,35°C时CH₄产量的下降与互营群落的缺失以及酚类物质对产甲烷菌的潜在抑制作用有关。温度升高进一步诱导微生物群落发展出基于高生长产量和压力耐受性状的策略,导致其组成和功能发生转变。另一方面,在21°C非限制性硫酸盐浓度存在的情况下,SRB能够胜过产甲烷菌,从而减少CH₄排放。然而,在较高的硫酸盐浓度下,能够产生足够低分子量碳底物以供SRB和产甲烷菌共存的群落的普遍存在转化为CH₄排放增加。本研究中组学的应用增强了我们对微生物与系统非生物成分之间结构和相互作用的理解,这对于在全球变化面前减轻泥炭地生态系统的温室气体排放可能是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验