Ahmad Aijaz, Rather Aafaq A, Alqasem Ohud A, Bakr M E, Mekiso Getachew Tekle, Balogun Oluwafemi Samson, Hussam Eslam, Gemeay Ahmed M
Department of Mathematics, Bhagwant University, Ajmer, India.
Symbiosis Statistical Institute, Symbiosis International (Deemed University), Pune, 411004, India.
Sci Rep. 2025 Apr 16;15(1):13069. doi: 10.1038/s41598-025-95084-w.
In recent years, integrating trigonometric techniques into probability models has garnered significant interest. This paper presents a novel trigonometric generator based on the Arc cosine function, referred to as the Arc cos-Ψ distribution. The proposed distribution demonstrates unique and flexible patterns in its probability density function (PDF) and hazard rate function (HRF), showcasing its ability to effectively model both symmetrical and asymmetrical data behaviors. Key mathematical properties of the distribution are thoroughly investigated, including moments, extremum behavior of the PDF and HRF, incomplete moments, quantile function, and entropies. Parameter estimation is carried out using various methods, and their performance is assessed through comprehensive numerical studies. Additionally, a simulation study is conducted to further validate the distribution's properties and estimation techniques. The practical utility and adaptability of the model are demonstrated using two real-world datasets, including COVID-19 data, where the distribution provides an exceptional fit and reveals unique data characteristics. This underscores its potential for modeling complex datasets with intricate structures, making it a valuable addition to the statistical toolkit.
近年来,将三角技术集成到概率模型中引起了广泛关注。本文提出了一种基于反余弦函数的新型三角生成器,称为反余弦-Ψ分布。所提出的分布在其概率密度函数(PDF)和危险率函数(HRF)中表现出独特而灵活的模式,展示了其有效模拟对称和非对称数据行为的能力。对该分布的关键数学性质进行了深入研究,包括矩、PDF和HRF的极值行为、不完全矩、分位数函数和熵。使用各种方法进行参数估计,并通过全面的数值研究评估其性能。此外,还进行了模拟研究以进一步验证该分布的性质和估计技术。使用两个真实世界的数据集,包括COVID-19数据,证明了该模型的实际效用和适应性,该分布提供了出色的拟合并揭示了独特的数据特征。这突出了其对具有复杂结构的复杂数据集进行建模的潜力,使其成为统计工具包中的一个有价值的补充。