Suppr超能文献

驱动蛋白两个运动结构域的动力学调节协调其沿微管的步移。

Kinetic regulation of kinesin's two motor domains coordinates its stepping along microtubules.

作者信息

Niitani Yamato, Matsuzaki Kohei, Jonsson Erik, Vale Ronald D, Tomishige Michio

机构信息

Department of Applied Physics, School of Engineering, The University of Tokyo, Tokyo, Japan.

Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan.

出版信息

Elife. 2025 Apr 17;14:RP106228. doi: 10.7554/eLife.106228.

Abstract

The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head-head coordination; however, which kinetic step(s) in the chemomechanical cycle is 'gated' by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin's motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

摘要

二聚体驱动蛋白-1的两个相同的马达结构域(头部)沿着微管以交替领先的方式移动,协调它们的ATP酶循环,使得每次ATP水解都与一步紧密偶联,并使马达能够进行许多步而不解离。颈部连接蛋白是连接两个头部的结构元件,已被证明对头部间的协调至关重要;然而,化学机械循环中的哪个动力学步骤由颈部连接蛋白“门控”仍未解决。在这里,我们采用稳态前动力学和单分子测定法来研究颈部连接蛋白的构象如何影响驱动蛋白的运动循环。我们表明,在前部驱动蛋白头部中颈部连接蛋白向后指向的构象赋予对微管更高的亲和力,但不会改变ATP的结合和解离速率。相反,在后部驱动蛋白头部中颈部连接蛋白向前指向的构象降低了ATP解离速率,但对微管解离影响很小。综合起来,颈部连接蛋白的这些构象特异性效应有利于在前端头部从微管脱离之前,后部头部进行ATP水解和解离,从而为二聚体驱动蛋白的协同行走机制提供了动力学解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52a9/12005725/be666debd7fb/elife-106228-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验