Suppr超能文献

基于类推法的二元分类法,用于根据经合组织测试指南421/422测试的有机化合物的发育和生殖毒性评估

Read-across-driven binary classification for the developmental and reproductive toxicity of organic compounds tested according to the OECD test guidelines 421/422.

作者信息

Chatterjee M, Pore S, Szepesi Z, Roy K

机构信息

Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics Laboratory, Jadavpur University, Kolkata, India.

Regulatory Toxicology, Global Product Compliance (Europe) AB, Lund, Sweden.

出版信息

SAR QSAR Environ Res. 2025 Mar;36(3):247-270. doi: 10.1080/1062936X.2025.2483765. Epub 2025 Apr 17.

Abstract

Developmental and reproductive toxicity (DART) refers to the adverse effects on sexual function, fertility, and the development of offspring resulting from exposure to toxic substances or chemicals, which may occur at various stages of the reproductive cycle. In response to the increasing volume of chemicals, regulatory bodies advocate for implementing various new approach methodologies (NAMs) as alternatives to animal testing, enabling rapid assessments of the toxic potential of numerous chemical substances. In this study, in silico methodologies were utilized to assess the DART properties of various industrial chemicals. We employed a Read-Across (RA)-based binary classification approach to evaluate the DART potential of these chemicals. The data for the binary classification have been compiled from two distinct sources: eChemPortal (https://www.echemportal.org/echemportal/) and the National Institute of Health Sciences (NIHS) databases. The information gathered from these sources encompasses two types of toxicity data: No Observed Adverse Effect Level (NOAEL) and Low Observed Adverse Effect Level (LOAEL) tested as per the Organisation for Economic Co-operation and Development Test Guidelines 421 and 422, adopting the principles of Good Laboratory Practice (GLP). The data were utilized separately for safety assessment through a binary classification-based read-across prediction, demonstrating commendable classification capabilities for new chemicals (Accuracy ~0.700).

摘要

发育和生殖毒性(DART)是指因接触有毒物质或化学物质而对性功能、生育能力以及后代发育产生的不利影响,这些影响可能发生在生殖周期的各个阶段。针对化学物质数量的不断增加,监管机构主张采用各种新方法学(NAMs)来替代动物试验,以便能够快速评估众多化学物质的潜在毒性。在本研究中,利用计算机模拟方法评估了各种工业化学品的DART特性。我们采用基于相似性推导(RA)的二元分类方法来评估这些化学品的DART潜力。二元分类的数据来自两个不同的来源:eChemPortal(https://www.echemportal.org/echemportal/)和国立卫生科学研究所(NIHS)数据库。从这些来源收集的信息包括两种毒性数据:按照经济合作与发展组织测试指南421和422进行测试的未观察到不良反应水平(NOAEL)和低观察到不良反应水平(LOAEL),采用良好实验室规范(GLP)原则。这些数据通过基于二元分类的相似性推导预测分别用于安全评估,对新化学品显示出值得称赞的分类能力(准确率约为0.700)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验