Nonaka Daisuke, Kishida Mayumi, Hirata Yuuki, Mori Ayana, Kondo Akihiko, Mori Yutaro, Noda Shuhei, Tanaka Tsutomu
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan.
Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
Appl Environ Microbiol. 2025 May 21;91(5):e0246824. doi: 10.1128/aem.02468-24. Epub 2025 Apr 17.
The modularization of biosynthetic pathways is a promising approach for enhancing microbial chemical production. We have developed a co-utilization method with glucose and xylose substrates to divide metabolic pathways into distinct production and energy modules to enhance the biosynthesis of -aminobenzoic acid (pABA) in . Optimizing initial glucose/xylose concentrations and eliminating carbon leakage resulted in a pABA titer of 8.22 g/L (yield: 0.23 g/g glucose). This strategy was then applied to the biosynthesis of 4APhe, a compound synthesized from chorismate without pyruvate (PYR) release. Utilizing glucose and xylose as co-substrates resulted in the production of 4.90 g/L 4APhe. Although 4APhe production did not benefit from PYR-driven energy generation as pABA production did, high titer was still achieved. This study highlights the effectiveness of modular metabolic pathway division for enhancing the production of key aromatic compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups.
Microbial biosynthesis of chemicals from renewable resources offers a sustainable alternative to fossil fuel-based production. However, inefficiencies due to substrate diversion into by-products and biomass hinder optimal yields. In this study, we employed a modular metabolic engineering approach, decoupling pathways for chemical production from cell growth. Using glucose and xylose as co-substrates, we achieved the enhancement of -aminobenzoic acid production in . Additionally, we demonstrated the versatility of this approach by applying it to the biosynthesis of 4-amino-phenylalanine production. This study highlights the potential of modular metabolic pathway division for increased production of target compounds and provides valuable insight into microbial production of chemicals that require specific biosynthetic donors such as amino groups.
生物合成途径的模块化是提高微生物化学品产量的一种有前景的方法。我们开发了一种葡萄糖和木糖底物共利用方法,将代谢途径分为不同的生产和能量模块,以提高大肠杆菌中对氨基苯甲酸(pABA)的生物合成。优化初始葡萄糖/木糖浓度并消除碳泄漏后,pABA滴度达到8.22 g/L(产率:0.23 g/g葡萄糖)。然后将该策略应用于4-氨基苯丙氨酸(4APhe)的生物合成,4APhe是一种由分支酸合成且无丙酮酸(PYR)释放的化合物。利用葡萄糖和木糖作为共底物,产生了4.90 g/L的4APhe。虽然4APhe的生产不像pABA生产那样受益于PYR驱动的能量产生,但仍实现了高滴度。这项研究突出了模块化代谢途径划分在提高关键芳香族化合物产量方面的有效性,并为微生物生产需要特定生物合成供体(如氨基)的化学品提供了有价值的见解。
利用可再生资源进行微生物化学品生物合成是基于化石燃料生产的可持续替代方案。然而,由于底物转化为副产物和生物质导致的低效率阻碍了最佳产量。在本研究中,我们采用了模块化代谢工程方法,将化学品生产途径与细胞生长途径解耦。使用葡萄糖和木糖作为共底物,我们提高了大肠杆菌中对氨基苯甲酸的产量。此外,我们通过将其应用于4-氨基苯丙氨酸的生物合成证明了该方法的通用性。这项研究突出了模块化代谢途径划分在提高目标化合物产量方面的潜力,并为微生物生产需要特定生物合成供体(如氨基)的化学品提供了有价值的见解。