Mori Ayana, Hirata Yuuki, Kishida Mayumi, Nonaka Daisuke, Kondo Akihiko, Mori Yutaro, Noda Shuhei, Tanaka Tsutomu
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
Metab Eng. 2025 Apr 27;91:171-180. doi: 10.1016/j.ymben.2025.04.006.
The non-natural amino acid 4-nitrophenylalanine is a crucial pharmaceutical ingredient and has extensive utility in protein engineering. Here, we demonstrated the production of 4-nitrophenylalanine by Escherichia coli with AurF, 4-aminobenzoate N-oxygenase from Streptomyces thioluteus. Firstly, eight distinct gene combinations, encompassing four variants of papA and two of papBC, were evaluated to optimize the production of 4-aminophenylalanine, a precursor of 4-nitrophenylalanine. The strain co-expressing both pabAB from E. coli and papBC from Streptomyces venezuelae attained the highest 4-aminophenylalanine production. In a fed-batch fermenter cultivation, 4-aminophenylalanine production of 22.5 g/L was achieved. To produce 4-nitrophenylalanine from glucose, we constructed strains co-expressing AurF alongside the genes responsible for 4-aminophenylalanine synthesis. The subsequent optimization of the plasmid copy numbers carrying each gene set resulted in an increase in the 4-nitrophenylalanine production titer. Transcription analysis revealed that the expression level of the 4-aminophenylalanine biosynthetic genes markedly contributed to 4-nitrophenylalanine production. After optimizing batch fermentation conditions, the titer of 4-nitrophenylalanine increased to 2.22 g/L. Overall, these results provide the basis for industrial microbial production of 4-nitrophenylalanine, contributing to the advancement of biotechnological methodologies for generating non-natural amino acids with specific functionalities.
非天然氨基酸4-硝基苯丙氨酸是一种关键的药物成分,在蛋白质工程中具有广泛的用途。在此,我们展示了大肠杆菌利用来自硫黄链霉菌的AurF(4-氨基苯甲酸N-加氧酶)生产4-硝基苯丙氨酸的过程。首先,评估了包含papA的四个变体和papBC的两个变体的八种不同基因组合,以优化4-氨基苯丙氨酸(4-硝基苯丙氨酸的前体)的生产。共表达来自大肠杆菌的pabAB和来自委内瑞拉链霉菌的papBC的菌株实现了最高的4-氨基苯丙氨酸产量。在补料分批发酵罐培养中,4-氨基苯丙氨酸产量达到了22.5 g/L。为了从葡萄糖生产4-硝基苯丙氨酸,我们构建了共表达AurF以及负责4-氨基苯丙氨酸合成的基因的菌株。随后对携带每个基因集的质粒拷贝数进行优化,导致4-硝基苯丙氨酸生产滴度增加。转录分析表明,4-氨基苯丙氨酸生物合成基因的表达水平对4-硝基苯丙氨酸的生产有显著贡献。优化分批发酵条件后,4-硝基苯丙氨酸的滴度提高到了2.22 g/L。总体而言,这些结果为4-硝基苯丙氨酸的工业微生物生产提供了基础,有助于推进用于生成具有特定功能的非天然氨基酸的生物技术方法。