Lehotsky Kirsten, Neville Nolan, Martins Isabella, Poole Keith, Jia Zongchao
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
mBio. 2025 May 14;16(5):e0085525. doi: 10.1128/mbio.00855-25. Epub 2025 Apr 17.
Inorganic polyphosphate (polyP) is a universally conserved polymer involved in various biological processes, but its role as a direct protein regulator remains largely unexplored. Lysine polyphosphate modification (KPM), a strong but non-covalent interaction between polyP and lysine-rich protein sequences, has not been functionally characterized until now. In this study, we present the first investigation into KPM's biological significance using , a critical priority pathogen known for its antibiotic resistance and virulence. We identified two essential bacterial proteins, EngA and SrmB, as novel KPM targets. Through site-specific lysine deletions, we demonstrated that disrupting lysine-polyP interactions severely impairs biofilm formation and significantly reduces the production of key virulence factors, including pyoverdine and pyocyanin. These findings establish a direct functional link between polyP and bacterial pathogenicity mediated by KPM. Our results highlight KPM as a previously unrecognized regulatory mechanism critical for controlling bacterial virulence factors. This work uncovers the first functional role of KPM and its importance in regulating virulence phenotypes in a major human pathogen.IMPORTANCEPolyphosphate is commonly known for its roles in metabolism and stress response. How inorganic polyphosphate (polyP) facilitates bacterial virulence has remained largely elusive. This study reveals that lysine polyphosphate modification (KPM), a chemical interaction between polyP and lysine-rich proteins, is essential for bacterial survival and pathogenicity in , a harmful microbe responsible for difficult-to-treat infections. We discovered that disrupting KPM in key proteins impairs the bacteria's ability to form protective biofilms and produce harmful toxins. This previously unknown biological process links polyP to protein function in controlling bacterial virulence factors. Our findings open new possibilities for developing anti-virulence therapies aimed at reducing bacterial infections without promoting antibiotic resistance.
无机多聚磷酸盐(多聚P)是一种广泛存在且保守的聚合物,参与多种生物过程,但其作为直接蛋白质调节剂的作用在很大程度上仍未被探索。赖氨酸多聚磷酸盐修饰(KPM)是多聚P与富含赖氨酸的蛋白质序列之间一种强烈但非共价的相互作用,迄今为止尚未进行功能表征。在本研究中,我们首次利用一种以抗生素耐药性和毒力而闻名的关键优先病原体,对KPM的生物学意义进行了研究。我们鉴定出两种必需的细菌蛋白EngA和SrmB为新型KPM靶点。通过位点特异性赖氨酸缺失,我们证明破坏赖氨酸-多聚P相互作用会严重损害生物膜形成,并显著降低包括绿脓菌素和绿脓杆菌素在内的关键毒力因子的产生。这些发现建立了多聚P与由KPM介导的细菌致病性之间的直接功能联系。我们的结果突出了KPM作为一种以前未被认识的调节机制,对控制细菌毒力因子至关重要。这项工作揭示了KPM的首个功能作用及其在调节主要人类病原体毒力表型中的重要性。
重要性
多聚磷酸盐通常因其在代谢和应激反应中的作用而为人所知。无机多聚磷酸盐(多聚P)如何促进细菌毒力在很大程度上仍然难以捉摸。本研究表明,赖氨酸多聚磷酸盐修饰(KPM),即多聚P与富含赖氨酸的蛋白质之间的化学相互作用,对于一种导致难以治疗感染的有害微生物在生存和致病性方面至关重要。我们发现破坏关键蛋白中的KPM会损害细菌形成保护性生物膜和产生有害毒素的能力。这个以前未知的生物学过程将多聚P与控制细菌毒力因子中的蛋白质功能联系起来。我们的发现为开发旨在减少细菌感染而不促进抗生素耐药性的抗毒力疗法开辟了新的可能性。